SHIFTS OF THE KIESSIG OSCILLATIONS AND FARADAY ROTATION FOR X-RAY REFLECTIVITY FROM A MAGNETIZED FILM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Appearance of the refraction effects and Faraday rotation of the plane of polarization of linearly polarized X rays has been analyzed for transmission and reflection at grazing incidence angles for a resonant film with allowance for the X-ray magnetic or Mössbauer scattering. It is shown that, when the magnetization is oriented along the radiation beam direction, magnetic additives to the susceptibility do not affect the phase shifts between the waves reflected from the surface and the substrate; however, they induce “orthogonal polarization” in the reflected beam, which corresponds to rotation of the plane of polarization. Rotation of the plane of polarization is maximum for the critical angle of total external reflection; it is characterized by an oscillating dependence on the grazing angle, which can be used in future to vary the polarization state of X-ray beams.

About the authors

M. A. Andreeva

Lomonosov Moscow State University, Moscow, 119991 Russia

Email: Mandreeva1@yandex.ru
Россия, Москва

R. A. Baulin

Lomonosov Moscow State University, Moscow, 119991 Russia

Author for correspondence.
Email: baulin.roman@physics.msu.ru
Россия, Москва

References

  1. Kiessig H. // Annalen der Physik. 1931. B. 402. S. 715. https://doi.org/10.1002/andp.19314020607
  2. Segmüller A. // Thin Solid Films. 1973. V. 18. № 2. P. 287. https://doi.org/10.1016/0040-6090(73)90107-7
  3. Andreeva M.A., Smekhova A., Baulin R.A. et al. // J. Synchrotron Radiat. 2021. V. 28. № 5. P. 1535. https://doi.org/10.1107/S1600577521007694
  4. Смехова А.Г., Андреева М.А., Одинцова E.E. и др. // Кристаллография. 2010. Т. 55. № 5. С. 906. https://doi.org/10.1134/S1063774510050263
  5. Toperverg B.P., Lauter H.J., Lauter-Pasyuk V.V. // Physica B. 2005. V. 356. P. 1. https://doi.org/10.1016/j.physb.2004.10.035
  6. Федоров Ф.И. Теория гиротропии. Минск: Наука и техника, 1976. 456 с.
  7. Stepanov S.A., Sinha S.K. // Phys. Rev. B. 2000. V. 61. P. 15302. https://doi.org/10.1103/PhysRevB.61.15302
  8. Kuneš J., Oppeneer P.M., Mertins H.-Ch. et al. // Phys. Rev. B. 2001. V. 64. P. 174417. https://doi.org/10.1103/PhysRevB.64.174417
  9. Mertins H.C., Valencia S., Gaupp A. et al. // Appl. Phys. A. 2005. V. 80. P. 1011. https://doi.org/10.1007/s00339-004-3129-5
  10. Kortright J.B., Rice M., Kim M. et al. // J. Magn. Magn. Mater. 1999. V. 191. P. 79. https://doi.org/10.1016/S0304-8853(98)00344-8
  11. Kortright J.B., Rice M., Carr R. // Phys. Rev. B. 1995. V. 51. P. 10240. https://doi.org/10.1103/PhysRevB.51.10240
  12. Kortright J.B., Kim S.-K. // Phys. Rev. B. 2000. V. 62. P. 12216. https://doi.org/10.1103/PhysRevB.62.12216
  13. Mertins H.-Ch., Schäfers F., Gaupp A. et al. // Phys. Rev. B. 2000. V. 61. P. R874. https://doi.org/10.1103/PhysRevB.61.R874
  14. Imbert P. // Phys. Lett. 1964. V. 8. P. 956. https://doi.org/10.1016/0031-9163(64)90724-3
  15. Imbert P. // J. Phys. 1966. V. 27. P. 429. https://doi.org/10.1051/jphys:01966002707-8042900
  16. Gonser U., Housley U. // Phys. Lett. A. 1968. V. 26. P. 157. https://doi.org/10.1016/0375-9601(68)90053-4
  17. Housley R.M., Gonser U. // Phys. Rev. 1969. V. 171. P. 480. https://doi.org/10.1103/physrev.171.480
  18. Kistner O.C. // Phys. Rev. Lett. 1967. V. 19. № 15. P. 872. https://doi.org/10.1103/PhysRevLett.19.872
  19. Blume M., Kistner O.C. // Phys. Rev. 1968. V. 171. P. 417. https://doi.org/10.1103/PhysRev.171.417
  20. Airy G.B. // Philos. Mag. 1833. V. 2. P. 20. https://doi.org/10.1080/14786443308647959
  21. Борн М., Вольф Э. Основы оптики. Пер с англ. / Под ред. Мотулевич Г.П. М.: Наука, 1973. 720 с.
  22. Parratt L.G. // Phys. Rev. 1954. V. 95. P. 359. https://doi.org/10.1103/PhysRev.95.359
  23. Hamley I.W., Pedersen J.S. // J. Appl. Cryst. 1994. V. 27. P. 29. https://doi.org/10.1107/S0021889893006260
  24. Andreeva M.A., Repchenko Yu.L. // Crystallography Reports. 2013. V. 58. № 7. P. 1037.
  25. Андреева М.А., Смехова А.Г. // Изв. РАН. Сер. физ. 2008. Т. 72. № 5. С. 693.
  26. Андреева М.А. Рентгеновское излучение в исследовании магнетизма. Уч. пособ. для аспирантов и студентов старших курсов / Под ред. проф. Илюшина А.С. М.: Физический факультет МГУ, 2018. 192 с.
  27. Андреева М.А., Линдгрен Б. // Письма в ЖЭТФ. 2002. Т. 76. № 12. С. 833. https://doi.org/10.1134/1.1556209
  28. Andreeva M.A., Baulin R.A., Repchenko Yu.L. // J. Synchrotron Radiat. 2019. V. 26. P. 483. https://doi.org/10.1107/S1600577518018398
  29. Toellner T.S., Sturhahn W., Röhlsberger R. et al. // Phys. Rev. Lett. 1995. V. 74. P. 3475. https://doi.org/10.1103/PhysRevLett.74.3475
  30. Andreeva M.A., Lindgren B. // Phys. Rev. B. 2005. V. 72. P. 125422. https://doi.org/10.1103/PhysRevB.72.125422
  31. Rüffer R. // C. R. Physique. 2008. V. 9. P. 595. https://doi.org/10.1016/j.crhy.2007.06.003
  32. Андреева М.А. Ядерно-резонансная спектроскопия конденсированных сред. Ч. 2. Мёссбауэровские исследования на синхротронном излучении. Уч. пособ. для магистров и аспирантов / Под ред. проф. Илюшина А.С. М.: Физический факультет МГУ, 2019. 263 с.
  33. Rüffer R., Chumakov A.I. // Modern Mössbauer Spectroscopy. Topics in Applied Physics. / Eds. Yoshida Y., Langouche G. Singapore: Springer Nature, 2021. P. 1. https://doi.org/10.1007/978-981-15-9422-9

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (51KB)
3.

Download (30KB)
4.

Download (79KB)
5.

Download (62KB)
6.

Download (224KB)

Copyright (c) 2023 Russian Academy of Sciences