Breaking of the Cubic Symmetry in Millimeter-Size SrTiO3 Crystals: ESR Manifestations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The found effect of lowering the symmetry of the crystal structure of thin (less than 1 mm) plates and bars of strontium titanate (SrTiO3) single crystals is discussed. This symmetry lowering manifests itself in the electron spin resonance (ESR) spectra of impurity centers (Fe3+ and Mn4+ ions, used as paramagnetic probes). It is shown that symmetry lowering is observed at temperatures T > 105 K, which generally correspond to the cubic phase of SrTiO3; it leads to the formation of a tetragonal nonpolar structure, differing from the antiferrodistortive (AFD) phase D4ℎ18, which is characteristic of strontium titanate at T < 105 K and was not observed previously in SrTiO3. The factors determining the distortion value are found to be the geometry and ratio of sample sizes, surface finishing quality, and crystallographic orientation of plates.

Sobre autores

B. Gabbasov

Kazan Federal University, 420008, Kazan, Russia

Email: BFGabbasov@kpfu.ru
Россия, Казань

I. Gracheva

Kazan Federal University, 420008, Kazan, Russia

Email: BFGabbasov@kpfu.ru
Россия, Казань

S. Nikitin

Kazan Federal University, 420008, Kazan, Russia

Email: BFGabbasov@kpfu.ru
Россия, Казань

V. Trepakov

Ioffe Institute, Russian Academy of Sciences, 194021, St. Petersburg, Russia

Email: BFGabbasov@kpfu.ru
Россия, Санкт-Петербург

R. Yusupov

Kazan Federal University, 420008, Kazan, Russia

Autor responsável pela correspondência
Email: BFGabbasov@kpfu.ru
Россия, Казань

Bibliografia

  1. Gastiasoro M.N., Rouhman J., Fernandes R.M. // Ann. Phys. 2020. V. 417. P. 168107. https://doi.org/10.1016/j.aop.2020.168107
  2. Kiselov D.E., Feigelman M.V. // Phys. Rev. B. 2021. V. 104. P. 220506. https://doi.org/10.1103/PhysRevB.104.L220506
  3. Makarova M.V., Prokhorov A., Stupakov A. et al. // Crystals. 2022. V. 12. P. 1275. https://doi.org/10.3390/cryst12091275
  4. Габбасов Б.Ф., Родионов А.А., Никитин С.И. и др. // ФТТ. 2021. Т. 63. С. 2.
  5. Gabbasov B.F., Gracheva I.N., Rodionov A.A. et al. // Europhys. Lett. 2021. V. 133. P. 37002. https://doi.org/10.1209/0295-5075/133/37002
  6. Unoki H., Sakudo T. // J. Phys. Soc. Jpn. 1967. V. 23. P. 546. https://doi.org/10.1143/JPSJ.23.546
  7. Rimai L., DeMars G. // Phys. Rev. 1962. V. 127. P. 702. https://doi.org/10.1103/PhysRev.127.702
  8. Müller K.A. // Phys. Rev. Lett. 1959. V. 2. P. 341. https://doi.org/10.1103/PhysRevLett.2.341
  9. Müller K.A. “Paramagnetische Resonanz von Fe3+ in SrTiO3 Einkristallen” Ph.D. dissertation. Basel, 1958. https://doi.org/10.3929/ethz-a-000104546
  10. Abragam A. Electron Paramagnetic Resonance of Transition Ions. Oxford: Oxford Univ. Press, 2012. 911 p.
  11. Gabbasov B.F., Gracheva I.N., Nikitin S.I. et al. // Magn. Reson. Solids. 2018. V. 20 (2). Art. 18201.
  12. Ham F.S. // Phys. Rev. 1965. V. 138. P. 1727. https://doi.org/10.1103/PhysRev.138.A1727
  13. Aso K. // Jpn. J. Appl. Phys. V. 15 1976. P. 1243. https://doi.org/10.1143/JJAP.15.1243
  14. Глинчук М.Д. Электрические эффекты в радиоспектроскопии. Электронный парамагнитный, двойной электронно-ядерный и параэлектрический резонансы. М.: Наука, 1981. 336 с.
  15. Mims W.B. The Linear Electric Field Effect in Paramagnetic Resonance. Oxford: Clarendon Press, 1976. 339 p.
  16. Каганов М.И., Омельянчук А.Н. // ЖЭТФ. 1971. Т. 61. С. 1679.
  17. Zhou Y., Rabe K.M., Vanderbilt D. // Phys. Rev. B. 2015. V. 92. Art. 041102. https://doi.org/10.1103/PhysRevB.92.041102
  18. Vanderbilt D. // Surf. Rev. Lett. 1997. V. 4. P. 811. https://doi.org/10.1142/S0218625X9700081X
  19. Okazaki A., Ohama N., Muller K.A. // J. Phys. C: Solid State Phys. 1986. V. 19. P. 5019. https://doi.org/10.1088/0022-3719/19/25/019
  20. Höchli U.T., Rohrer H. // Phys. Rev. Lett. 1982. V. 48. P. 188. https://doi.org/10.1103/PhysRevLett.48.188

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (243KB)
3.

Baixar (324KB)
4.

Baixar (550KB)
5.

Baixar (325KB)
6.

Baixar (411KB)
7.

Baixar (325KB)
8.

Baixar (327KB)
9.

Baixar (288KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2023