Fluorite solid solutions of congruent melting in the PbF2–CdF2–RF3 systems

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Based on thermodynamic-topological analysis, the concentration regions for obtaining homogeneous crystals in the MF2M'F2–RF3 systems (MM' = Ca, Sr, Cd, Ba and Pb, R = rare earth elements, REEs) were determined. Fluorite solid solution crystals in the PbF2–CdF2RF3 systems (R = Tb, Ho, Er, Tm, Yb and Lu) were grown by the vertical directional crystallization technique. Their phase composition and distribution of components along the length of the crystalline boule were studied. Crystals of congruently melting solid solutions (Pb0.67Cd0.33)1–xRxF2+x (R = Tb, Ho, Er, Tm, Yb, Lu) were grown for the first time. In crystals with R = Ho, Er, Tm and Yb traces of low-temperature ordering of the solid solution were found – phase isostructural to the Pb2YF7 compound (sp. gr. I4/m), in which the Y positions are occupied by the corresponding R cations, and the Pb positions can be partially replaced Cd cations. Crystals with R = Tb and Lu have a high degree of homogeneity and are suitable for optical research.

全文:

受限制的访问

作者简介

I. Buchinskaya

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

编辑信件的主要联系方式.
Email: buchinskayii@gmail.com
俄罗斯联邦, Moscow

P. Fedorov

A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: buchinskayii@gmail.com
俄罗斯联邦, Moscow

参考

  1. Mouchovski J.T., Temelkov K.A., Vuchkov N.K. // Prog. Cryst. Growth Characteriz. Mater. 2011. V. 57. Р. 1. https://doi.org/10.1016/J.PCRYSGROW.2010.09.003
  2. Wu Ye-Qing, Su Liang-Bi, Xu Jun et al. // Acta Phys. Sin. 2012. V. 61. № 17. P. 177801. https://doi.org/10.7498/aps.61.177801
  3. Kaminskii A.A. Laser crystals, their physics and properties. Berlin: Springer-Verlag, 1991. 457p.
  4. Dorenbos P., Visser R., Dool et al. // J. Phys.: Condens. Matter. 1992. V. 4. P. 5281. https://doi.org/10.1088/0953-8984/4/23/005
  5. Sobolev B.P., Krivandina E.A., Derenzo S.E. et al. // MRS Online Proceedings Library. 1994. V. 348. P. 277. https://doi.org/10.1557/PROC-348-277
  6. Sobolev B.P. Multicomponent Crystals Based on Heavy Metal Fluorides for Radiation Detectors. Institut d’Estudis Catalans, 1994.
  7. Luo J., Ye L., Xu J. // J. Nanosci. Nanotechnol. 2016. V. 16. P. 3985. https://doi.org/10.1166/jnn.2016.11873
  8. Blasse G., Grabmaie B.C. Luminescent Materials. Berlin; Heidelberg: Springer-Verlag, 1994. https://doi.org/10.1007/9783-642-79017-1
  9. Maurizio S.L., Tessitore G., Kramer K.W., Capobianco J.A. // ACS Appl. Nano Mater. 2021. V. 4. P. 5301. https://doi.org/10.1021/acsanm.1c00652
  10. Madirov E., Kuznetsov S.V., Konyushkin V.A. et al. // J. Mater. Chem. C. 2021. V. 9. P. 3493. https://doi.org/10.1039/D1TC00104C
  11. Ryskin A.I., Shcheulin A.S., Miloglyadov E.V. et al. // J. Appl. Phys. 1998. V. 83. № 4. P. 2215. https://doi.org/10.1063/1.366959
  12. Geitenbeek R.G., Nieuwelink A.-E., Jacobs et al. // ACS Catal. 2018. V. 8. P. 2397. https://doi.org/10.1021/acscatal.7b04154
  13. Chen W., Cao J., Hu F. et al. // J. Alloys Compd. 2018. V. 735. P. 2544. https://doi.org/10.1016/j.jallcom.2017.11.201
  14. Runowski M., Goderski S., Przybylska et al. // ACS Appl. Nano Mater. 2020. V. 3. P. 6406. https://doi.org/10.1021/acsanm.0c00839
  15. John H. Burnett, Zachary H., Eric L. Shirley // Phys. Rev. B. 2001. V. 64. P. 241102(R). https://doi.org/10.1103/PhysRevB.64.241102
  16. Wapenaar K.E.D., Van Koesveld J.L., Schoonman J. // Solid State Ionics. 1981. V. 2. P. 145. https://doi.org/10.1016/0167-2738(81)90172-7
  17. Sorokin N.I., Fedorov P.P., Sobolev B.P. // Inorg. Mater. 1997. V. 33. № 1. P. 1.
  18. Preishuber-Pflügl F., Bottke P., Pregartner V. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 9580. https://doi.org/10.1039/C4CP00422A
  19. Rammutla K.E., Comins J.D., Erasmus R.M. et al. // Chem. Phys. 2016. V. 467. P. 6.
  20. Nikolaichik V.I., Sobolev B.P., Sorokin N.I., Avilov A.S. // Solid State Ionics. 2015. V. 10. P. 279. https://doi.org/10.1016/j.ssi.2015.07.015
  21. Nikolaichik V.I., Sobolev B.P., Sorokin N.I., Avilov A.S. // Solid State Ionics. 2022. V. 386. P. 116052. https://doi.org/10.1016/j.ssi.2022.116052
  22. Gschwind F., Rodrigues-Garsia G., Sandbeck D.J.S. et al. // J. Fluorine Chem. 2016. V. 182. P. 76. https://doi.org/10.1016/j.jfluchem.2015.12.002
  23. Мурин И.В., Чернов С.В. // Изв. АН СССР. Неорган. материалы. 1982. Т. 18. С. 168.
  24. Kosacki I. // Appl. Phys. A. 1989. V. 49. P. 413. https://doi.org/10.1007/BF00615026
  25. Vasil’chenko V.G., Zhumurova Z.I., Krivandina E.A. et al. // Instrum. Exp. Tech. 2000. V. 43. C. 46. https://doi.org/10.1007/BF02758997
  26. Багдасаров Х.С. // Кристаллохимия. Итоги науки и техники. М.: ВИНИТИ, 1987. Т. 21. С. 1.
  27. Федоров П.П., Бучинская И.И. // Успехи химии. 2012. Т. 81. № 1. С. 1. https://doi.org/10.1070/RC2012v081n01ABEH004207
  28. Schreinemakers F.A.H. // Z. Phys. Chem. 1901. V. 36. P. 413.
  29. Серафимов Л.А. // Журн. физ. химии. 1970. Т. 44. № 4. С. 1021.
  30. Писаренко Ю.А. // Журн. физ. химии. 2008. Т. 82. № 1. С. 1. https://doi.org/10.1134/S0036024408010019
  31. Schreinemakers F.A.H. // Z. Phys. Chem. 1905. V. 52. P. 513.
  32. Серафимов Л.А. // Журн. физ. химии. 2002. Т. 76. № 8. С. 1351.
  33. Buchinskaya I.I., Goryachuk I.O., Sorokin N.I. et al. // Condens. Matter. 2023. V. 8. P. 73. https://doi.org/10.3390/condmat8030073
  34. Ушаков С.Н., Усламина М.А., Пыненков А.А. и др. // Конденсированные среды и межфазные границы. 2021. Т. 23. № 1. С. 101. https://doi.org/10.17308/kcmf.2021.23/3310
  35. Sobolev B.P. The Rare Earth Trifluorides: The High Temperature Chemistry of the Rare Earth Trifluorides. Institut d’Estudis Catalans, 2000.
  36. Федоров П.П. // Журн. неорган. химии. 2021. Т. 66. № 2. С. 245. https://doi.org/10.31857/S0044457X21020070
  37. Федоров П.П. // Журн. неорган. химии. 2021. Т. 66. № 10. С. 1371. https://doi.org/10.31857/S0044457X21100044
  38. Соболев Б.П. // Кристаллография. 2012. Т. 57. № 3. С. 490.
  39. Федоров П.П., Соболев Б.П. // Журн. неорган. химии. 1979. Т. 24. № 4. С. 1038.
  40. Федоров П.П., Бучинская И.И., Стасюк В.А., Бондарева О.С. // Журн. неорган. химии. 1996. Т. 41. № 3. Р. 445.
  41. Стасюк В.А. Изучение седловинных точек на поверхностях ликвидуса и солидуса в тройных системах с трифторидами редкоземельных элементов. Дисс. … канд. хим. наук. М.: МИТХТ, 1998.
  42. Каримов Д.Н., Комарькова О.Н., Сорокин Н.И. и др. // Кристаллография. 2010. Т. 55. № 3. С. 556. https://doi.org/10.1134/S1063774510030247
  43. Tikhomirov V.K., Furniss D., Seddon A.B. et al. // J. Mater. Sci. Lett. 2002. V. 21. P. 293. https://doi.org/10.1023/A:1017919719782
  44. Bordj S., Satha H., Barros A. et al. // Opt. Mater. 2021. V. 118. P. 111249. https://doi.org/10.1016/j.optmat.2021.111249
  45. Fartas R., Diaf M., Martin I.R. et al. // J. Lumin. 2020. V. 228. P. 117594. https://doi.org/10.1016/j.jlumin.2020.117594
  46. Cheddadi A., Fartas R., Diaf M., Boubekri H. // J. Lumin. 2024. V. 265. P. 120237. https://doi.org/10.1016/j.jlumin.2023.120237
  47. Gerasimov K.I., Falin M.L. // Phys. Solid State. 2009. V. 51. P. 721. https://doi.org/10.1134/S1063783409040118
  48. Севостьянова Т.С., Хомяков А.В., Маякова М.Н. и др. // Оптика и спектроскопия. 2017. Т. 123. № 5. С. 734. https://doi.org/ 10.7868/S0030403417110198
  49. Krivandina E.A. // Butll. Soc. Cat. Sien. 1991. V. 12. P. 393.
  50. Baldochi S.L., Morato S.P. // Encyclopedia of Materials: Science and Technology / Eds. Buschow K.H.J. et al. Amsterdam: Elsevier Science, 2001. P. 3200.
  51. Karimov D.N., Buchinskaya I.I., Arkharova N.A. et al. // Crystals. 2021. V. 11. № 3. P. 285. https://doi.org/10.3390/cryst11030285
  52. Boultif A., Louer D. // J. Appl. Cryst. 1991. V. 24. P. 987. https://doi.org/10.1107/S0021889891006441
  53. Petříček V., Dušek M., Palatinus L. // Z. Kristallogr. Cryst. Mater. 2014. V. 229. P. 345. https://doi.org/10.1515/zkri-2014-1737
  54. Chalmers B. Principles of Solidification Wiley Series on the Science and Technology of Materials. Publ. John Wiley and Sons, 1964. 319 p.
  55. Dib A., Aleonard S., Roux M.Th. // J. Solid State Chem. 1984. V. 52. P. 292. https://doi.org/10.1016/0022-4596(84)90012-4

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Block diagram of the state diagrams of binary systems formed by fluorite difluorides of alkaline earth metals, MF2–MF2 (M = Ca, Sr, Cd, Ba, Pb)

下载 (102KB)
3. Fig. 2. The main types of liquid–solid state diagrams for ternary systems with continuous solid and liquid solutions: in the absence of congruent points on the melting surfaces (a) and in their presence – maximum (b), minimum (c) and saddle (d). The upper row schematically shows the shapes of the surfaces, in the middle – the general view of the T–x diagrams, in the lower - the projections of the liquidus surface (lines – isotherms)

下载 (264KB)
4. Fig. 3. Compositions of saddle points on concentration triangles for series of systems CaF2–SrF2–RF3 (a), BaF2–SrF2–RF3 (b) and PbF2–CdF2–RF3 (c)

下载 (274KB)
5. Fig. 4. Example of crystal beads “as grown”

下载 (338KB)
6. Fig. 5. Distribution of cations along the length of crystal beads for R = Tb (a), Ho(b), Er(c), Tm (d), Yb(e) and Lu(e). The inserts show examples of plates cut from crystals and illuminated for optical viewing

下载 (608KB)
7. Fig. 6. The general picture of the diffractograms Pb1–x–yCdxRyF2+y (R = Tb, Ho–Lu) (a). The enlarged area of the diffractograms near the background for R = Ho–Yb (b). The barcode diagrams of the Pb2YF7 compound (gr. I4/m) are shown above, PDF No. 00-037-1116, and the cubic phase of the sample Pb0.49Cd0.24Yb0.27F0.27 (etc. gr. Fm3m)

下载 (342KB)

版权所有 © Russian Academy of Sciences, 2024