Fluorite solid solutions of congruent melting in the PbF2–CdF2–RF3 systems
- 作者: Buchinskaya I.I.1, Fedorov P.P.2
-
隶属关系:
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences
- 期: 卷 69, 编号 2 (2024)
- 页面: 353-362
- 栏目: CRYSTAL GROWTH
- URL: https://ter-arkhiv.ru/0023-4761/article/view/673216
- DOI: https://doi.org/10.31857/S0023476124020194
- EDN: https://elibrary.ru/YRZKEG
- ID: 673216
如何引用文章
详细
Based on thermodynamic-topological analysis, the concentration regions for obtaining homogeneous crystals in the MF2–M'F2–RF3 systems (M≠M' = Ca, Sr, Cd, Ba and Pb, R = rare earth elements, REEs) were determined. Fluorite solid solution crystals in the PbF2–CdF2–RF3 systems (R = Tb, Ho, Er, Tm, Yb and Lu) were grown by the vertical directional crystallization technique. Their phase composition and distribution of components along the length of the crystalline boule were studied. Crystals of congruently melting solid solutions (Pb0.67Cd0.33)1–xRxF2+x (R = Tb, Ho, Er, Tm, Yb, Lu) were grown for the first time. In crystals with R = Ho, Er, Tm and Yb traces of low-temperature ordering of the solid solution were found – phase isostructural to the Pb2YF7 compound (sp. gr. I4/m), in which the Y positions are occupied by the corresponding R cations, and the Pb positions can be partially replaced Cd cations. Crystals with R = Tb and Lu have a high degree of homogeneity and are suitable for optical research.
全文:

作者简介
I. Buchinskaya
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
编辑信件的主要联系方式.
Email: buchinskayii@gmail.com
俄罗斯联邦, Moscow
P. Fedorov
A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: buchinskayii@gmail.com
俄罗斯联邦, Moscow
参考
- Mouchovski J.T., Temelkov K.A., Vuchkov N.K. // Prog. Cryst. Growth Characteriz. Mater. 2011. V. 57. Р. 1. https://doi.org/10.1016/J.PCRYSGROW.2010.09.003
- Wu Ye-Qing, Su Liang-Bi, Xu Jun et al. // Acta Phys. Sin. 2012. V. 61. № 17. P. 177801. https://doi.org/10.7498/aps.61.177801
- Kaminskii A.A. Laser crystals, their physics and properties. Berlin: Springer-Verlag, 1991. 457p.
- Dorenbos P., Visser R., Dool et al. // J. Phys.: Condens. Matter. 1992. V. 4. P. 5281. https://doi.org/10.1088/0953-8984/4/23/005
- Sobolev B.P., Krivandina E.A., Derenzo S.E. et al. // MRS Online Proceedings Library. 1994. V. 348. P. 277. https://doi.org/10.1557/PROC-348-277
- Sobolev B.P. Multicomponent Crystals Based on Heavy Metal Fluorides for Radiation Detectors. Institut d’Estudis Catalans, 1994.
- Luo J., Ye L., Xu J. // J. Nanosci. Nanotechnol. 2016. V. 16. P. 3985. https://doi.org/10.1166/jnn.2016.11873
- Blasse G., Grabmaie B.C. Luminescent Materials. Berlin; Heidelberg: Springer-Verlag, 1994. https://doi.org/10.1007/9783-642-79017-1
- Maurizio S.L., Tessitore G., Kramer K.W., Capobianco J.A. // ACS Appl. Nano Mater. 2021. V. 4. P. 5301. https://doi.org/10.1021/acsanm.1c00652
- Madirov E., Kuznetsov S.V., Konyushkin V.A. et al. // J. Mater. Chem. C. 2021. V. 9. P. 3493. https://doi.org/10.1039/D1TC00104C
- Ryskin A.I., Shcheulin A.S., Miloglyadov E.V. et al. // J. Appl. Phys. 1998. V. 83. № 4. P. 2215. https://doi.org/10.1063/1.366959
- Geitenbeek R.G., Nieuwelink A.-E., Jacobs et al. // ACS Catal. 2018. V. 8. P. 2397. https://doi.org/10.1021/acscatal.7b04154
- Chen W., Cao J., Hu F. et al. // J. Alloys Compd. 2018. V. 735. P. 2544. https://doi.org/10.1016/j.jallcom.2017.11.201
- Runowski M., Goderski S., Przybylska et al. // ACS Appl. Nano Mater. 2020. V. 3. P. 6406. https://doi.org/10.1021/acsanm.0c00839
- John H. Burnett, Zachary H., Eric L. Shirley // Phys. Rev. B. 2001. V. 64. P. 241102(R). https://doi.org/10.1103/PhysRevB.64.241102
- Wapenaar K.E.D., Van Koesveld J.L., Schoonman J. // Solid State Ionics. 1981. V. 2. P. 145. https://doi.org/10.1016/0167-2738(81)90172-7
- Sorokin N.I., Fedorov P.P., Sobolev B.P. // Inorg. Mater. 1997. V. 33. № 1. P. 1.
- Preishuber-Pflügl F., Bottke P., Pregartner V. et al. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 9580. https://doi.org/10.1039/C4CP00422A
- Rammutla K.E., Comins J.D., Erasmus R.M. et al. // Chem. Phys. 2016. V. 467. P. 6.
- Nikolaichik V.I., Sobolev B.P., Sorokin N.I., Avilov A.S. // Solid State Ionics. 2015. V. 10. P. 279. https://doi.org/10.1016/j.ssi.2015.07.015
- Nikolaichik V.I., Sobolev B.P., Sorokin N.I., Avilov A.S. // Solid State Ionics. 2022. V. 386. P. 116052. https://doi.org/10.1016/j.ssi.2022.116052
- Gschwind F., Rodrigues-Garsia G., Sandbeck D.J.S. et al. // J. Fluorine Chem. 2016. V. 182. P. 76. https://doi.org/10.1016/j.jfluchem.2015.12.002
- Мурин И.В., Чернов С.В. // Изв. АН СССР. Неорган. материалы. 1982. Т. 18. С. 168.
- Kosacki I. // Appl. Phys. A. 1989. V. 49. P. 413. https://doi.org/10.1007/BF00615026
- Vasil’chenko V.G., Zhumurova Z.I., Krivandina E.A. et al. // Instrum. Exp. Tech. 2000. V. 43. C. 46. https://doi.org/10.1007/BF02758997
- Багдасаров Х.С. // Кристаллохимия. Итоги науки и техники. М.: ВИНИТИ, 1987. Т. 21. С. 1.
- Федоров П.П., Бучинская И.И. // Успехи химии. 2012. Т. 81. № 1. С. 1. https://doi.org/10.1070/RC2012v081n01ABEH004207
- Schreinemakers F.A.H. // Z. Phys. Chem. 1901. V. 36. P. 413.
- Серафимов Л.А. // Журн. физ. химии. 1970. Т. 44. № 4. С. 1021.
- Писаренко Ю.А. // Журн. физ. химии. 2008. Т. 82. № 1. С. 1. https://doi.org/10.1134/S0036024408010019
- Schreinemakers F.A.H. // Z. Phys. Chem. 1905. V. 52. P. 513.
- Серафимов Л.А. // Журн. физ. химии. 2002. Т. 76. № 8. С. 1351.
- Buchinskaya I.I., Goryachuk I.O., Sorokin N.I. et al. // Condens. Matter. 2023. V. 8. P. 73. https://doi.org/10.3390/condmat8030073
- Ушаков С.Н., Усламина М.А., Пыненков А.А. и др. // Конденсированные среды и межфазные границы. 2021. Т. 23. № 1. С. 101. https://doi.org/10.17308/kcmf.2021.23/3310
- Sobolev B.P. The Rare Earth Trifluorides: The High Temperature Chemistry of the Rare Earth Trifluorides. Institut d’Estudis Catalans, 2000.
- Федоров П.П. // Журн. неорган. химии. 2021. Т. 66. № 2. С. 245. https://doi.org/10.31857/S0044457X21020070
- Федоров П.П. // Журн. неорган. химии. 2021. Т. 66. № 10. С. 1371. https://doi.org/10.31857/S0044457X21100044
- Соболев Б.П. // Кристаллография. 2012. Т. 57. № 3. С. 490.
- Федоров П.П., Соболев Б.П. // Журн. неорган. химии. 1979. Т. 24. № 4. С. 1038.
- Федоров П.П., Бучинская И.И., Стасюк В.А., Бондарева О.С. // Журн. неорган. химии. 1996. Т. 41. № 3. Р. 445.
- Стасюк В.А. Изучение седловинных точек на поверхностях ликвидуса и солидуса в тройных системах с трифторидами редкоземельных элементов. Дисс. … канд. хим. наук. М.: МИТХТ, 1998.
- Каримов Д.Н., Комарькова О.Н., Сорокин Н.И. и др. // Кристаллография. 2010. Т. 55. № 3. С. 556. https://doi.org/10.1134/S1063774510030247
- Tikhomirov V.K., Furniss D., Seddon A.B. et al. // J. Mater. Sci. Lett. 2002. V. 21. P. 293. https://doi.org/10.1023/A:1017919719782
- Bordj S., Satha H., Barros A. et al. // Opt. Mater. 2021. V. 118. P. 111249. https://doi.org/10.1016/j.optmat.2021.111249
- Fartas R., Diaf M., Martin I.R. et al. // J. Lumin. 2020. V. 228. P. 117594. https://doi.org/10.1016/j.jlumin.2020.117594
- Cheddadi A., Fartas R., Diaf M., Boubekri H. // J. Lumin. 2024. V. 265. P. 120237. https://doi.org/10.1016/j.jlumin.2023.120237
- Gerasimov K.I., Falin M.L. // Phys. Solid State. 2009. V. 51. P. 721. https://doi.org/10.1134/S1063783409040118
- Севостьянова Т.С., Хомяков А.В., Маякова М.Н. и др. // Оптика и спектроскопия. 2017. Т. 123. № 5. С. 734. https://doi.org/ 10.7868/S0030403417110198
- Krivandina E.A. // Butll. Soc. Cat. Sien. 1991. V. 12. P. 393.
- Baldochi S.L., Morato S.P. // Encyclopedia of Materials: Science and Technology / Eds. Buschow K.H.J. et al. Amsterdam: Elsevier Science, 2001. P. 3200.
- Karimov D.N., Buchinskaya I.I., Arkharova N.A. et al. // Crystals. 2021. V. 11. № 3. P. 285. https://doi.org/10.3390/cryst11030285
- Boultif A., Louer D. // J. Appl. Cryst. 1991. V. 24. P. 987. https://doi.org/10.1107/S0021889891006441
- Petříček V., Dušek M., Palatinus L. // Z. Kristallogr. Cryst. Mater. 2014. V. 229. P. 345. https://doi.org/10.1515/zkri-2014-1737
- Chalmers B. Principles of Solidification Wiley Series on the Science and Technology of Materials. Publ. John Wiley and Sons, 1964. 319 p.
- Dib A., Aleonard S., Roux M.Th. // J. Solid State Chem. 1984. V. 52. P. 292. https://doi.org/10.1016/0022-4596(84)90012-4
补充文件
