Structure and conductivity of lithium-doped fluorite-like Nd5Mo3O16 molybdates

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Rare-earth molybdenum-containing oxides of nominal composition LixNd5xMo3O16 ± δ (x = 0, 0.05, 0.15, 0.25) with a fluorite-derived structure were first obtained as single crystals from a melt solution and by solid-phase synthesis in air as polycrystalline samples. The new phases were characterized by X-ray phase analysis, synchronous thermal analysis, and impedance spectroscopy. X-ray structural analysis showed that lithium atoms are localized near the positions of rare-earth cations. The chemical formula of the investigated single crystal was determined as Li0.216Nd4.784Mo3O14.1+δ. A small amount of lithium did not significantly affect the ability of the studied phases to undergo dissociative water absorption but led to a decrease in the total conductivity of lithium-doped LixNd5xMo3O16 ± δ ceramics.

全文:

受限制的访问

作者简介

E. Orlova

Lomonosov Moscow State University; Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

编辑信件的主要联系方式.
Email: agapova@polly.phys.msu.ru
俄罗斯联邦, Moscow; Moscow

M. Trukhacheva

Lomonosov Moscow State University; Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: agapova@polly.phys.msu.ru
俄罗斯联邦, Moscow; Moscow

T. Sorokin

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: agapova@polly.phys.msu.ru
俄罗斯联邦, Moscow

V. Kvartalov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: agapova@polly.phys.msu.ru
俄罗斯联邦, Moscow

A. Antipin

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: agapova@polly.phys.msu.ru
俄罗斯联邦, Moscow

N. Lyskov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS; HSE University

Email: agapova@polly.phys.msu.ru
俄罗斯联邦, Chernogolovka, Moscow region; Moscow

E. Kharitonova

Lomonosov Moscow State University; Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: agapova@polly.phys.msu.ru
俄罗斯联邦, Moscow; Moscow

N. Novikova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: natnov@crys.ras.ru
俄罗斯联邦, Moscow

N. Sorokina

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: agapova@polly.phys.msu.ru
俄罗斯联邦, Moscow

O. Alekseeva

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: agapova@polly.phys.msu.ru
俄罗斯联邦, Moscow

V. Voronkova

Lomonosov Moscow State University

Email: agapova@polly.phys.msu.ru
俄罗斯联邦, Moscow

参考

  1. Hubert P.-H., Michel P., Thozet A. // Compt. Rend. Acad. Sc. Paris. 1973. V. 276. P. 1779.
  2. Tsai M., Greenblatt M., McCarroll W.H. // Chem Mater. 1989. V. 1. P. 253. https://doi.org/10.1021/cm00002a017
  3. Voronkova V.I., Leonidov I.A., Kharitonova E.P. et al. // J. Alloys Compd. 2014. V. 615. P. 395. https://doi.org/10.1016/j.jallcom.2014.07.019
  4. Lyskov N.V., Kotova A.I., Petukhov D.I. et al. // Russ. J. Electrochem. 2022. V. 58. № 11. P. 989. https://doi.org/10.1134/S102319352211009X
  5. Крегер Ф. Химия несовершенных кристаллов. М.: Мир, 1969. 654 с.
  6. Istomin S.Y., Kotova A.I., Lyskov N.V. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 10. P. 1291. https://doi.org/10.1134/S003602361810008X
  7. Lyskov N.V., Kotova A.I., Istomin S.Y. et al. // Russ. J. Electrochem. 2020. V. 56. № 2. P. 93. https://doi.org/10.1134/S102319352002010X
  8. Jacas Biendicho J., Playford H.Y., Rahman S.M.H. et al. // Inorg. Chem. 2018. V. 57. № 12. P. 7025. https://doi.org/10.1021/acs.inorgchem.8b00734
  9. Faurie J.P., Kohlmuller R. // Rev. Chim. Min. 1971. V. 8. P. 241.
  10. Martínez-Lope M.J., Alonso J.A., Sheptyakov D. et al. // J. Solid State Chem. 2010. V. 183. № 12. P. 2974. https://doi.org/10.1016/j.jssc.2010.10.015
  11. Alekseeva O.A., Gagor A.B., Pietraszko A. et al. // Z. Kristallogr. 2012. V. 227. № 12. P. 869. https://doi.org/10.1524/zkri.2012.1563
  12. Antipin A.M., Sorokina N.I., Alekseeva O.A. et al. // Acta Cryst. B. 2015. V. 71. № 2. P. 186. https://doi.org/10.1107/S2052520615003315
  13. Алексеева О.А. Дис. “Прецизионный рентгеноструктурный анализ локальных атомных конфигураций, определяющих физические свойства монокристаллов сложных оксидов”… д-ра физ.-мат. наук. М.: НИЦ “КИ”, 2022.
  14. Voronkova V.I., Kharitonova E.P., Orlova E.I. et al. // J. Alloys Compd. 2016. V. 673. P. 314. https://doi.org/10.1016/j.jallcom.2016.03.013
  15. Voronkova V.I., Kharitonova E.P., Orlova E.I. // Crystallography Reports. 2018. V. 63. P. 127. https://doi.org/10.1134/S1063774518010212
  16. Faurie J.P. // Bull. Soc. Chim. Fr. 1971. V. 11. P. 3865.
  17. Voronkova V., Kharitonova E., Orlova E. et al. // J. Am. Ceram. Soc. 2020. V. 103. № 11. P. 6414. https://doi.org/10.1111/jace.17374
  18. Orlova E.I., Sorokin T.A., Baldin E.D. et al. // J. Solid State Chem. 2023. V. 324. P. 124078. https://doi.org/10.1016/j.jssc.2023.124078
  19. Orlova E., Sorokin T., Pustovit A. et al. // New J. Chem. 2023. V. 47. № 40. P. 18729. https://doi.org/10.1039/D3NJ03033D
  20. Petřiček V., Dušek M., Palatinus L. // Z. Kristallogr. 2014. V. 229. № 5. P. 345. https://doi.org/10.1515/zkri-2014-1737
  21. Rigaku Oxford Diffraction, CrysAlisPro Software System, Version 1.171.39.46. 2018. Rigaku Corporation, Oxford, UK.
  22. Palatinus L. // Acta Cryst. В. 2013. V. 69. P. 1. https://doi.org/10.1107/S2052519212051366
  23. Kolitsch U. // Z. Kristallogr. 2001. V. 216. № 8. P. 449. https://doi.org/10.1524/zkri.216.8.449.20358

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Photograph of LiyNd5 - yMo3O16 ± δ single crystal illuminated by LED lamp (5600 K)

下载 (215KB)
3. Fig. 2. Diffractograms of single crystal samples of nominal composition LiyNd5 - yMo3O16 ± δ (1) and LixNd5 - xMo3O16 ± δ ceramics, x: 0 (2), 0.05 (3), 0.15 (4), 0.25 (5)

下载 (98KB)
4. Fig. 3. DSC data for single-crystal samples (1 - heating, 2 - cooling) and LixNd5 - xMo3O16 ± δ, x = 0.05 ceramics (3 - heating, 4 - cooling)

下载 (88KB)
5. Fig. 4. Thermogravimetry (TG) data for single-crystal samples, initial Nd5Mo3O16 + δ (1) and lithiated (2), and LixNd5 - xMo3O16 ± δ ceramics, x: 0 (3), 0.05 (4), 0.15 (5)

下载 (62KB)
6. Fig. 5. Projection of the crystal structure Li0.216Nd4.784Mo3O14.1 + δ on the bc plane

下载 (356KB)
7. Fig. 6. Temperature dependences of the conductivity of Li0.216Nd4.784Mo3O14.1 + δ ceramics at x = 0, 0.15 (dark and light symbols, respectively) measured in dry (shaded symbols) and humid (empty symbols) air

下载 (61KB)

版权所有 © Russian Academy of Sciences, 2024