Electro-induced photonic structures in cholesteric and nematic liquid crystals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper reviews recent research performed at the liquid crystals laboratory of the A. V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, focusing on photonic liquid crystalline structures induced by electric fields. Due to field-induced spatial modulation of the refractive index, such structures exhibit optical properties characteristic of photonic crystals. Two types of structures are discussed. The first type is induced in cholesteric liquid crystals with spontaneous formation of a helical director distribution. The orientation transition to a state with a lying helix – with the axis in the plane of the layer – is considered. The second type consists of homogeneous layers of non-chiral nematic liquid crystals, where the modulation of the refractive index arises due to the flexoelectric instability effect. In both cases, periodic boundary conditions of molecule orientation are crucial. Methods of forming boundary conditions and the photonic properties of structures are reviewed.

Texto integral

Acesso é fechado

Sobre autores

S. Palto

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Autor responsável pela correspondência
Email: serguei.palto@gmail.com
Rússia, Moscow

A. Geivandov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: serguei.palto@gmail.com
Rússia, Moscow

I. Kasyanova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: serguei.palto@gmail.com
Rússia, Moscow

D. Rybakov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: serguei.palto@gmail.com
Rússia, Moscow

I. Simdyankin

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: serguei.palto@gmail.com
Rússia, Moscow

B. Umansky

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: serguei.palto@gmail.com
Rússia, Moscow

N. Shtykov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: serguei.palto@gmail.com
Rússia, Moscow

Bibliografia

  1. Schadt M. // Annu. Rev. Mater. Sci. 1997. V. 27. P. 305. https://doi.org/10.1146/annurev.matsci.27.1.305
  2. Hsiang E.-L., Yang Z., Yang Q. et al. // Adv. Opt. Photonics. 2022. V. 14. P. 783. https://doi.org/10.1364/aop.468066
  3. Yin K., Hsiang E.-L., Zou J. et al. // Light Sci. Appl. 2022. V. 11. P. 161. https://doi.org/10.1038/s41377-022-00851-3
  4. Li X., Li Y., Xiang Y. et al. //. Opt. Express. 2016. V. 24. P. 8824. https://doi.org/10.1364/OE.24.008824
  5. Davis S.R., Farca G., Rommel S.D. et al. // Proc. SPIE. 2010. V. 7618. P. 76180E-1. https://doi.org/10.1117/12.851788
  6. Brown C.M., Dickinson D.K.E., Hands P.J.W. // Opt. Laser Technol. 2021. V. 140. P. 107080. https://doi.org/10.1016/j.optlastec.2021.107080
  7. Coles H., Morris S. // Nat. Photonics. 2010. V. 4. P. 676. https://doi.org/10.1038/nphoton.2010.184
  8. Ortega J., Folcia C.L., Etxebarria J. // Liq. Cryst. 2022. V. 49. P. 427. https://doi.org/10.1080/02678292.2021.1974584
  9. Inoue Y., Yoshida H., Inoue K. et al. // Appl. Phys. Express. 2010. V. 3. P. 102702. https://doi.org/10.1143/apex.3.102702
  10. Palto S.P., Geivandov A.R., Kasyanova I.V. et al. // Opt. Lett. 2021. V. 46. P. 3376. https://doi.org/10.1364/OL.426904
  11. Kasyanova I.V., Gorkunov M.V., Palto S.P. // Europhys. Lett. 2022. V. 136. P. 24001. https://doi.org/10.1209/0295-5075/ac4ac9
  12. Gorkunov M.V., Kasyanova I.V., Artemov V.V. et al. // ACS Photonics. 2020. V. 7. P. 3096. https://doi.org/10.1021/acsphotonics.0c01168
  13. Shtykov N.M., Palto S.P., Geivandov A.R. et al. // Opt. Lett. 2020. V. 45. P. 4328. https://doi.org/10.1364/ol.394430
  14. Palto S.P. // Crystals. 2019. V. 9. P. 469. https://doi.org/10.3390/cryst9090469
  15. Kopp V.I., Zang Z.-Q., Genack A.Z. // Prog. Quantum Electron. 2003. V. 27. P. 369. https://doi.org/10.1016/S0079-6727(03)00003-X
  16. Kogelnik H., Shank C.V. // J. Appl. Phys. 1972. V. 43. P. 2327. https://doi.org/10.1063/1.1661499
  17. Palto S.P., Shtykov N.M., Kasyanova I.V. et al. // Liq. Cryst. 2020. V. 47. P. 384. https://doi.org/10.1080/02678292.2019.1655169
  18. Вистинь Л.К. // Докл. АН СССР. 1970. Т. 194. № 6. С. 1318.
  19. Williams R. // J. Chem. Phys. 1963. V. 39. P. 384. https://doi.org/10.1063/1.1734257
  20. Бобылев Ю.П., Пикин С.А. // ЖЭТФ. 1977. Т. 72. С. 369.
  21. Пикин С.А. Структурные превращения в жидких кристаллах. М.: Наука, 1981. 336 с.
  22. Барник М.И., Блинов Л.М., Труфанов А.Н. и др. // ЖЭТФ. 1977. Т. 73. С. 1936.
  23. Barnik M.I., Blinov L.M., Trufanov A.N. et al. // J. Phys. France. 1978. V. 39. № 4. P. 417. https://doi.org/10.1051/jphys:01978003904041700
  24. Meyer R.B. // Phys. Rev. Lett. 1969. V. 22. P. 918. https://doi.org/10.1103/PhysRevLett.22.918
  25. Palto S.P. // Crystals. 2021. V. 11. P. 894. https://doi.org/10.3390/cryst11080894
  26. Simdyankin I.V., Geivandov A.R., Umanskii B.A. et al. // Liq. Cryst. 2023. V. 50. № 4. P. 663. https://doi.org/10.1080/02678292.2022.2154865
  27. Палто С.П., Гейвандов А.Р., Касьянова И.В. и др. // Письма в ЖЭТФ. 2017. Т. 105. Вып. 3. С. 158. https://doi.org/10.7868/S0370274X17030067
  28. Kasyanova I.V., Gorkunov M.V., Artemov V.V. et al. // Opt. Express. 2018. V. 26. P. 20258. https://doi.org/10.1364/oe26.020258
  29. Gorkunov M.V., Kasyanova I.V., Artemov V.V. et al. // Beilstein J. Nanotechnol. 2019. V. 10. P. 1691. https://doi.org/10.3762/bjnano.10.164
  30. Артемов В.В., Хмеленин Д.Н., Мамонова А.В. и др. // Кристаллография. 2021. Т. 66. № 4. С. 636. https://doi.org/10.31857/S0023476121040032
  31. Непорент Б.С., Столбова О.В. // Оптика и спектроскопия. 1963. T. 14. Вып. 5. С. 624.
  32. Макушенко А.М., Непорент Б.С., Столбова О.В. // Оптика и спектроскопия. 1971. T.31. Вып. 4. С. 557.
  33. Козенков В.М., Юдин С.Г., Катышев Е.Г. и др. // Письма в ЖЭТФ. 1986. Т. 12. № 20. С. 1267.
  34. Ostrovskii B.I., Palto S.P. // Liq. Cryst. Today. 2023. V. 32. P. 18. https://doi.org/10.1080/1358314X.2023.2265788
  35. Palto S.P., Shtykov N.M., Khavrichev V.A. et al. // Mol. Mater. 1992. V. 1. P. 3.
  36. Palto S.P., Khavrichev V.A., Yudin S.G. et al. // Mol. Mater. 1992. V. 2. P. 63.
  37. Palto S.P., Blinov L.M., Yudin S.G. et al. // Chem. Phys. Lett. 1993. V. 202. P. 308. https://doi.org/10.1016/0009-2614(93)85283-t
  38. Palto S.P., Durand G. // J. Phys. II France. 1995. V. 5. P. 963. https://doi.org/10.1051/jp2:1995223
  39. Palto S.P., Yudin S.G., Germain C. et al. // J. Phys. II France. 1995. V. 5. P. 133. https://doi.org/10.1051/jp2:1995118
  40. Kwok H.S., Chigrinov V.G., Takada H. et al. // J. Display Technol. 2005. V. 1. P. 41. https://doi.org/10.1109/jdt.2005.852512
  41. Shteyner E.A., Srivastava A.K., Chigrinov V.G. et al. // Soft Matter. 2013. V. 9. P. 5160. https://doi.org/10.1039/c3sm50498k
  42. Chen D., Zhao H., Yan K. et al. // Opt. Express. 2019. V. 27. P. 29332. https://doi.org/10.1364/oe.27.029332
  43. Geivandov A.R., Simdyankin I.V., Barma D.D. et al. // Liq. Cryst. 2022. V. 49. P. 2027. https://doi.org/10.1080/02678292.2022.2094004
  44. Salter P.S., Carbone G., Jewell S.A. et al. // Phys. Rev. E. 2009. V. 80. P. 041707. https://doi.org/10.1103/PhysRevE.80.041707
  45. Yu C.-H., Wu P.-C., Lee W. // Crystals. 2019. V. 9. P. 183. https://doi.org/10.3390/cryst9040183
  46. Kahn F.J. // Phys. Rev. Lett. 1970. V. 24. P. 209. https://doi.org/10.1103/PhysRevLett.24.209
  47. Palto S.P., Barnik M.I., Geivandov A.R. et al. // Phys. Rev. E. 2015. V. 92. P. 032502. https://doi.org/10.1103/PhysRevE.92.032502
  48. Link D.R., Nakata M., Takanishi Y. et al. // Phys. Rev. E. 2001. V. 65. P. 010701(R). https://doi.org/10.1103/PhysRevE.65.010701
  49. Palto S.P., Mottram N.J., Osipov M.A. // Phys. Rev. E. 2007. V 75. P. 061707. https://doi.org/10.1103/PhysRevE.75.061707
  50. Xiang Y., Jing H.-Z., Zhang Z.-D. et al. // Phys. Rev. Appl. 2017. V. 7. P. 064032. https://doi.org/10.1103/PhysRevApplied.7.064032
  51. Škarabot M., Mottram N.J., Kaur S. et al. // ACS Omega. 2022. V. 7. P. 9785. https://doi.org/10.1021/acsomega.2c00023

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. SEM images of the gratings recorded on the polyimide film by the ion beam (a) and the corresponding images of the nematic LC oriented by these gratings in the polarization microscope (b, c) for different orientations of the polarizer (P) and analyzer (A) with respect to the rubbing direction R. A magnified SEM image of one of the lattices with a period of 400 nm is shown on the right. The period of large lattices (left) is 20 μm [27]

Baixar (168KB)
3. Fig. 2. Stages of obtaining binary-oriented surface by FOA method: 1 - an optically isotropic film of photosensitive material is applied, 2 - irradiation with linearly polarized light (e is the direction of oscillation of the electric vector) induces the optical axis (OA) in the film plane perpendicular to the polarization vector e, 3 - irradiation with unpolarized light through a phototemplate records the fringes with induced OA in the direction normal to the surface

Baixar (162KB)
4. Fig. 3. Illustration of the electric-field induced orientational transition from a grunzhanov texture with a vertical helix axis (a) to a deformed layered helix (DLH) state (b) under the condition of periodic binary coupling modulation on the bottom surface. The transition to the DLH state occurs when a threshold electrical voltage of ~11 V is exceeded. The director distributions in the xz- and xy- (at the layer center) sections of the layer are shown on the left and right, respectively. The color scale corresponds to the z-component of the LC director, which is depicted as a cylinder

Baixar (305KB)
5. Fig. 4. Change in the diffraction pattern at 630 nm wavelength during the transition from the grunzhanov texture (a) under conditions of binary periodic coupling to the state with deformed recumbent helix (b) at an electric voltage of 13 V. The natural pitch of the CML helix is 470 nm, the period of binary coupling modulation is 1.5 μm

Baixar (151KB)
6. Fig. 5. Scheme of experimental registration of optical diffraction (a) and laser effect (b) at transition to the state with deformed lying helix: 1 - photodetector, 2 - source of electric voltage, 3 - substrates of the CLC cell, 4 - lattice region for binary orientation, 5 - probing (a) or excitation (b) laser beam, 6 - directions of diffraction (a) or laser generation (b)

Baixar (185KB)
7. Fig. 6. Experimental dependences of the diffraction efficiency on the electric voltage during the electrically induced transition to the state with a deformed lying helix in LC-1282 nematic blend-based LC (p0 = 465 nm, ⊥= 5.6, ||| = 15.5, n⊥= 1.510, n||| = 1.678) at the binary lattice period Λ = 0.94 μm (a): 1 - at increasing voltage U, 2 - at decreasing voltage U. Laser generation effect in the state with deformed lying helix at the binary lattice period Λ = 550 nm in E7-based CML ( = 13.8, K2 = 6.5 pN, p0 = 260 nm, n⊥ = 1.52, n|| = 1.74) (b): 1 - at U = 21.9, 2 - U = 22.5, 3 - U = 22.6, 4 - U = 23.7 V

Baixar (168KB)
8. Fig. 7. Laser generation effect in E7-based LCs in the DLH state for different spatial periods of binary LC coupling modulation [13]. On the left: 1 - Λ = 550, 2 - Λ = 560, 3 - Λ = 570 nm; the corresponding DLH junction voltages are 23.5, 23.1, 22.4 V; the laser effect is obtained at an optical pump intensity of 3 MW/cm2 at the edges of third-order photonic stop bands (m = 3 in equation (2)). On the right is the laser effect for a fourth-order photonic stop band (Λ = 760 nm): 1-3 correspond to electric voltages of 16, 16.6, 17 V at an optical pump intensity of 0.75 MW/cm2

Baixar (216KB)
9. Fig. 8. Texture images of the CLC layer in linearly polarized light (vector e direction along the binary lattice strokes) without an analyzer. On the left - the electric field is turned off. On the right - electric voltage U = 1.75 V inducing the DLH state. The inset on the right is the diffraction pattern observed in the back focal plane of the microscope

Baixar (144KB)
10. Fig. 9. Director distribution in the center of the LC layer after orientation transition (U = 12 V) to the spatially modulated state (flexoelectric lattice). The LC director is depicted by cylinders, the color shows the value of its z-component. The initial distribution of the director (under an electric field U = 0 V) is homogeneous planar with orientation along the y-axis. In the x direction, the spatial scale is stretched by a factor of 2 compared to the z direction

Baixar (134KB)
11. Fig. 10. Induction of a flexoelectric lattice under conditions of binary coupling on one of the surfaces. On the left - director distribution (modeling). On the right - photo in polarization microscope [26]. The period of the binary oriented lattice is 5.5 μm

Baixar (342KB)
12. Fig. 11. Transmission spectra in the waveguide mode of the induced flexoelectric grating: 1 - TM-polarized light, 2 - TE-polarized light. The spectra were calculated by the FDTD method [25]. Curve 1 demonstrates the presence of a pronounced photon stop zone

Baixar (81KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024