Induction of ductile modes of ice fracture and drastic enhancement of its fracture energy by means of introduction of nanoscale additives

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Ice brittleness and low strength limits its usage as a construction material in cold climate regions on Earth (Arctics, Antarctic, high mountain regions on other continents) as well as in construction of habitable colonies at Moon and Mars planned by several countries despite attractiveness of its other properties. The paper presents experimental study of enhancement of ice carrying capacity and fracture energy by introduction of SiO2 nanoparticles and polyvinyl alcohol into it. Concentration dependences of these properties enhancement are found. Quantitative characteristics of transition from brittle fracture mode in pure ice to ductile one in ice composite caused by growing content of additives are revealed. This transition results in 2–3 orders of magnitude increase in ice fracture energy.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Yu. Golovin

G. R. Derzhavin Tambov State University; Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: yugolovin@yandex.ru
Ресей, Tambov; Moscow

V. Vasyukov

G. R. Derzhavin Tambov State University

Email: yugolovin@yandex.ru
Ресей, Tambov

V. Rodaev

G. R. Derzhavin Tambov State University

Email: yugolovin@yandex.ru
Ресей, Tambov

A. Samodurov

G. R. Derzhavin Tambov State University

Email: yugolovin@yandex.ru
Ресей, Tambov

D. Golovin

G. R. Derzhavin Tambov State University

Email: yugolovin@yandex.ru
Ресей, Tambov

A. Tyurin

G. R. Derzhavin Tambov State University

Email: tyurinalexander@yandex.ru
Ресей, Tambov

S. Razlivalova

G. R. Derzhavin Tambov State University

Email: yugolovin@yandex.ru
Ресей, Tambov

V. Buznik

G. R. Derzhavin Tambov State University; Lomonosov Moscow State University

Email: yugolovin@yandex.ru
Ресей, Tambov; Moscow

Әдебиет тізімі

  1. Бузник В.М., Каблов Е.Н. // Вестник РАН. 2017. Т. 87. № 9. С. 831.
  2. Бузник В.М., Бурковская Н.П., Зибарева И.В. и др. Арктическое материаловедение: состояние и развитие. М.: РГУ нефти и газа им. И.М. Губкина, 2021. 414 c.
  3. Grande M., Linli G., Blanc M. // Planetary Exploration Horizon 2061. 2023. P. 249. https://doi.org/10.1016/B978-0-323-90226-7.00002-7
  4. Reynard B., Sotin C. // Earth Planet. Sci. Lett. 2023. V. 612. P. 118172. https://doi.org/10.1016/j.epsl.2023.118172
  5. Hemingway D., Iess L., Tajeddine R., Tobie G. // Enceladus and the Icy Moons of Saturn / Eds. Schenk P.M. et al. Tucson: University of Arizona Press, 2018. P. 57. https://doi.org/10.2458/azu_uapress_9780816537075-ch004
  6. Krishna Swamy K.S. Physics of comets. World Scientific Publishing Company. 1997. 396 p.
  7. Физика и механика льда (перевод с англ.) / Ред. Трюде П.М.: Мир, 1983. 384 с.
  8. Schulson E.M., Duval P. Creep and Fracture of Ice. Cambridge University Press, 2009. 401 p.
  9. Timco G.V., Weeks W.F. // Cold Reg. Sci. Technol. 2010. V. 60. P. 107. https://doi.org/10.1016/j.coldregions.2009.10.003
  10. Arenson L.U., Colgan W., Marshall H.P. // Snow and Ice-Related Hazards, Risks, and Disasters. Elsevier Inc., 2015. P. 35. https://doi.org/10.1016/B978-0-12-394849-6.00002-0
  11. Архаров И.А., Гончарова Г.Ю. // Холодильная техника. 2010. № 11. С. 46.
  12. Гончарова Г.Ю., Разомасов Н.Д., Борщев Г.В., Бузник В.М. // Химическая технология. 2020. Т. 21. № 12. С. 548. https://doi.org/10.31044/1684-5811-2020-21-12-548-560
  13. Xie J., Yan M.-L., Yan J.-B. // Cold Reg. Sci. Technol. 2022. V. 206. № 4. P. 103751. https://doi.org/10.1016/j.coldregions.2022.103751
  14. Yan M.-L., Jian X., Yan J.-B. // J. Build. Eng. 2023. V. 65. P. 105751. https://doi.org/10.1016/j.jobe.2022.105757
  15. Vasiliev N.K. // Cold Reg. Sci. Technol. 1993. V. 21. P. 195. https://doi.org/10.1016/0165-232X(93)90007-U
  16. Syromyatnikova A.S., Bol’shakov A.M., Alekseeva A.V. // Environ. Earth Sci. 2020. V. 459. P. 062119. https://doi.org/10.1088/1755-1315/459/6/062119
  17. Lou X., Wu Y. // Cold Reg. Sci. Technol. 2021. V. 192. P. 103381. https://doi.org/10.1016/j.coldregions.2021.103381
  18. Buznik V.M., Goncharova G.Y., Grinevich D.V. et al. // Cold Reg. Sci. Technol. 2022. V. 196. P. 103490. https://doi.org/10.1016/j.coldregions.2022.103490
  19. Vasiliev N.K., Pronk A.D.C., Shatalina I.N. et al. // Cold Reg. Sci. Technol. 2015. V. 115. P. 56. https://doi.org/10.1016/j.coldregions.2015.03.006
  20. Li J.H., Wei Z., Wu C. // Mater. Des. 2015. V. 67. P. 464. https://doi.org/10.1016/j.matdes.2014.10.040
  21. Pronk A., Mistur M., Li Q. et al. // Structures. 2019. V. 18. P. 117. https://doi.org/10.1016/j.istruc.2019.01.020
  22. Wu Y., Liu X., Chen B. et al. // Autom. Constr. 2019. V. 106. № 12. P. 102862. https://doi.org/10.1016/j.autcon.2019.102862
  23. Бузник В.М., Головин Ю.И., Самодуров А.А. и др. // Материаловедение. 2023. № 6. C. 10. https://doi.org/10.31044/1684-579X-2023-0-6-10-15
  24. Головин Ю.И., Самодуров А.А., Родаев В.В. и др. // Письма в ЖТФ. 2023. T. 49. № 11. C. 15. https://doi.org/10.21883/PJTF.2023.11.55532.19542
  25. Yasui M., Schulson E.M., Renshaw C.E. // J. Geophys. Res. Solid Earth. 2017. V. 122. № 8. P. 6014. https://doi.org/10.1002/2017JB014029
  26. Головин Ю.И., Самодуров А.А., Родаев В.В. и др. // ЖТФ. 2023. Т. 93. № 10. С. 1459. https://doi.org/10.21883/JTF.2023.10.56284.149-23
  27. Gao W., Smith D.W., Sego D.C. // Cold Reg. Sci Technol. 1999. V. 29. № 2. P. 121. https://doi.org/10.1016/S0165-232X(99)00019-1
  28. John M., Suominen M., Sormunen Otto-V. et al. // Water Res. 2018. V. 145. P. 418. https://doi.org/10.1016/j.watres.2018.08.063
  29. Deng Y., Zongkun L., Zhijun L., Wang J. // Cold Reg. Sci. Technol. 2019. V. 168. P. 102896. https://doi.org/10.1016/j.coldregions.2019.102896
  30. Stoll N., Eichler J., Hörhold et al. // Front. Earth Sci. 2021. V. 8. P. 1. https://doi.org/10.3389/feart.2020.615613
  31. Голубев В.Н. // Вестн. МГУ. Сер. 5: География. 2013. № 3. С. 19.
  32. Dempsey J. // Ice-Structure Interaction / Eds. Jones S.J. et al. Springer-Verlag, 1991. P. 109. https://doi.org/10.1007/978-3-642-84100-2
  33. Xu X., Jeronimidis G., Atkins A.G. et al. // J. Mater. Sci. 2004. V. 39. P. 225. https://doi.org/10.1023/B:JMSC.0000007748.36956.a9
  34. Gharamti I.E., Dempsey J.P., Polojärvi A., Tuhkuri J. // Materialia. 2021. V. 20. Р. 101188. https://doi.org/10.1016/j.mtla.2021.101188
  35. Baker I. // Philos. Trans. Royal. Soc. A. 2019. V. 377. Р. 20180162. https://doi.org/10.1098/rsta.2018.0162
  36. Bachtiger F., Congdon T.R., Stubbs C. et al. // Nature Commun. 2021. V. 12. P. 1323. https://doi.org/10.1038/s41467-021-21717-z

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Typical s–e diagrams of uniaxial compression loading for LC with PVA (1–5, 8), LC PVA + 0.3% SiO2 (6, 10, 11, 13) and LC PVA + 3% SiO2 (7, 9, 12, 15) with PVA concentrations from 0 to 7 wt. %; 1–5, 8, 14 – PVA concentrations of 0, 0.003, 0.01, 0.03, 0.1, 0.3, 5 wt. %, respectively, 6, 10, 11, 13 – 0, 0.5, 3, 5 wt. %, respectively, 7, 9, 12, 15 – 0, 0.3, 3, 7 wt. %, respectively, sp is the peak stress.

Жүктеу (177KB)
3. Fig. 2. Dependences of peak stresses σp withstood by LC under uniaxial compression on the PVA concentration ω: 1 – LC with PVA, 2 – LC PVA + 0.3% SiO2, 3 – LC PVA + 3% SiO2, 4 – pure ice. The insets show the grain structure of pure ice and LC with 3 wt. % SiO2.

Жүктеу (234KB)
4. Fig. 3. Dependences of inelastic deformation Dep (a) and specific work A (b) on the mass fraction of PVA additive ω: 1 – LC with PVA, 2 – LC PVA + 0.3% SiO2, 3 – LC PVA + 3% SiO2, 4 – pure ice, 5 – pure ice according to data in [34]. Single hatching – detection limits Δεp ~ 0.01% and A ~ 50 J/m2, double hatching – theoretical limit of specific energy of absolutely brittle fracture near A ~ 1 J/m2, arrows – possible real values ​​of Δεp and A.

Жүктеу (236KB)
5. Fig. 4. Dependence of specific work A on inelastic deformation Dep before reaching sp for LC with PVA: 1 – LC with PVA, 2 – LC PVA + 0.3% SiO2, 3 – LC PVA +3% SiO2, 4 – pure ice, arrows – possible real values ​​of Δεp and A.

Жүктеу (66KB)
6. Fig. 5. Dependences of inelastic deformation Dep (a) and specific work A (b) on sp for LC with PVA: 1 – LC with PVA, 2 – LC PVA + 0.3% SiO2, 3 – LC PVA + 3% SiO2, 4 – pure ice. Single hatching – detection limits Δεp ~ 0.01% and A ~ 50 J/m2, double hatching – theoretical limit of specific energy of absolutely brittle fracture near A ~ 1 J/m2, arrows – possible real values ​​of Δεp and A.

Жүктеу (219KB)

© Russian Academy of Sciences, 2024