Diversity of fundamental building blocks [M(IO3)6] in iodate families and new trigonal polymorph of Cs2HIn(IO3)6

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Crystals of new structural high-symmetry modification of Cs2HIn(IO3)6, which crystallyzes in sp. gr. R3 with parameters of unit cell a = 11.8999(4), c = 11.6513(5) Å were obtained in hydrothermal conditions. Crystal chemical comparison with triclinic modification the investigated earlier was carried out. Both structures are composed of isolated blocks [In(IO3)6]3–. The new modification belongs to the family of trigonal iodates isostructural to K2Ge(IO3)6 compound. Local symmetry of separated blocks [M(IO3)6] (M = Ge, Ti, Sn, Ga, In and other metals) are analyzed. Structural systematic of iodate families is suggested on the base of comparative crystal chemical analysis. The influence of cation composition and synthesis conditions on symmetry and topology of crystal structures as well as local symmetry of blocks on physical properties of compounds are discussed.

全文:

受限制的访问

作者简介

O. Reutova

Lomonosov Moscow State University

Email: elbel@geol.msu.ru

Geological Faculty, Department of Crystallography and Crystal Chemistry

俄罗斯联邦, Moscow

E. Belokoneva

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: elbel@geol.msu.ru

Geological Faculty, Department of Crystallography and Crystal Chemistry

俄罗斯联邦, Moscow

A. Volkov

Skolkovo Institute of Science and Technology

Email: elbel@geol.msu.ru
俄罗斯联邦, Moscow

О. Dimitrova

Lomonosov Moscow State University

Email: elbel@geol.msu.ru

Geological Faculty, Department of Crystallography and Crystal Chemistry

俄罗斯联邦, Moscow

参考

  1. Sun C.-F., Yang B.-P., Mao J.-G. // Sci. China Chem. 2011. V. 54. P. 911. https://doi.org/10.1007/s11426-011-4289-8
  2. Hu C.-L., Mao J.-G. // Coord. Chem. Rev. 2015. V. 288. P. 1. https://doi.org/10.1016/j.ccr.2015.01.005
  3. Guo S.-P., Chi Y., Guo G.-C. // Coord. Chem. Rev. 2017. V. 335. P. 44. https://doi.org/10.1016/j.ccr.2016.12.013
  4. Mao F.-F., Hu C.-L., Chen J. et al. // Chem. Commun. 2019. V. 55. P. 6906. https://doi.org/10.1039/c9cc02774b
  5. Jia Y.-J., Chen Y.-G., Guo Y. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 48. P. 17194. https://doi.org/10.1002/ange.201908935
  6. Chen J., Hu C.-L., Mao F.-F. et al. // Chem. Sci. 2019. V. 10. P. 10870. https://doi.org/10.1039/c9sc04832d
  7. Reutova O., Belokoneva E., Volkov A. et al. // Symmetry. 2022. V. 14. P. 1699. https://doi.org/10.3390/sym14081699
  8. Wu C., Lin L., Jiang X.X. et al. // Chem. Mater. 2019. V. 31. № 24. P. 10100. https://doi.org/10.1021/acs.chemmater.9b03214
  9. Abudouwufu T., Zhang M., Cheng S.C. et al. // Eur. J. Inorg. Chem. 2019. V. 25. P. 1221. https://doi.org/10.1002/chem.201804995
  10. Luo M., Liang F., Hao X. et al. // Chem. Mater. 2020. V. 32. № 6. P. 2615. https://doi.org/10.1021/acs.chemmater.0c00196
  11. Fan H.X., Lin C.S., Chen K.C. et al. // Angew. Chem. 2020. V. 59. P. 5268. https://doi.org/10.1002/anie.201913287
  12. Chen J., Hu C.-L., Mao F.-F. et al. // Angew. Chem. Int. Ed. 2019. V. 58. P. 2098. https://doi.org/10.1002/anie.201813968
  13. Cao Z., Yue Y., Yao J. et al. // Inorg. Chem. 2011. V. 50. № 24. P. 12818. https://doi.org/10.1021/ic201991m
  14. Wu Q., Liu H., Jiang F. et al. // Chem. Mater. 2016. V. 28. P. 1413. https://doi.org/10.1021/acs.chemmater.5b04511
  15. Zhang M., Hu C., Abudouwufu T. et al. // Chem. Mater. 2018. V. 30. P. 1136. https://doi.org/10.1021/acs.chemmater.7b05252
  16. Mao F.-F., Hu C.-L., Chen J. et al. // Inorg. Chem. 2019. V. 58. P. 3982. https://doi.org/10.1021/acs.inorgchem.9b00075
  17. Chen J., Hu C.-L., Mao F.-F. et al. // Angew. Chem. Commun. 2019 V. 58. P. 11666. https://doi.org/10.1002/anie.201904383
  18. Xu Y., Zhou Y., Lin C. et al. // Cryst. Growth Des. 2021. V. 21. P. 7098. https://doi.org/10.1021/acs.cgd.1c00992
  19. De Boer J.L., van Bolhuis F., Olthof-Hazekamp R.V. // Acta Cryst. 1966. V. 21 (5). P. 841. https://doi.org/10.1107/s0365110x66004031
  20. Liminga R., Abrahams S.C., Bernstein J.L. // J. Chem. Phys. 1975. V. 62. P. 4388. https://doi.org/10.1063/1.430339
  21. Jansen M. // Solid State Chem. 1976. V. 17. P. 1.
  22. Liang J.K., Wang C.G. // Acta Chim. Sin. 1982. V. 40. P. 985.
  23. Schellhaas F., Hartl H.T., Frydrych R. // Acta Cryst. B. 1972. V. 28. № 9. P. 2834.
  24. Phanon D., Bentria B., Jeanneau E. et al. // Z. Krist. 2006. V. 221. P. 635.
  25. Phanon D., Mosset A., Gautier-Luneau I. // J. Mater. Chem. 2007. V. 17. № 11. P. 1123. https://doi.org/10.1039/B612677D
  26. Shehee T.C., Pehler S.F., Albrecht-Schmitt T.E. // J. Alloys Compd. 2005. V. 388. P. 225. https://doi.org/10.1016/j.jallcom.2004.07.037
  27. Chang H.-Y., Kim S.-H., Ok K.M., Halasyamani P.S. // J. Am. Chem. Soc. 2009. V. 131. № 19. P. 6865. https://doi.org/10.1021/ja9015099
  28. Sun C.-F., Hu C.-L., Kong F. et al. // Dalton Trans. 2010. V. 39. P. 1473. https://doi.org/10.1039/B917907K
  29. Kim Y.H., Tran T.T., Halasyamani P.S., Ok K.M. // Inorg. Chem. Front. 2015. V. 2. P. 361. https://doi.org/10.1039/C4QI00243A
  30. Yang B.P., Hu C.L., Xu X., Mao J.G. // Inorg. Chem. 2016. V. 55. № 5. P. 2481. https://doi.org/10.1021/acs.inorgchem.5b02859
  31. Liu H., Jiang X., Wang X. et al. // J. Mater. Chem. C. 2018. V. 6. P. 4698. https://doi.org/10.1039/c8tc00851e
  32. Liu K., Han J., Huang J. et al. // RSC Adv. 2021. V. 11. P. 10309. https://doi.org/10.1039/d0ra10726c
  33. Ok K.M., Halasyamani P.S. // Inorg. Chem. 2005. V. 44. P. 2263. https://doi.org/10.1021/ic048428c
  34. Belokoneva E.L., Karamysheva A.S., Dimitrova O.V., Volkov A.S. // Crystallography Reports. 2018. V. 63. P. 734. https://doi.org/10.1134/S1063774518050048
  35. Xiao L., You F., Gong P. et al. // Cryst. Eng. Commun. 2019. V. 21. P. 4981. https://doi.org/10.1039/c9ce00814d
  36. Liu X., Li G., Hu Y. et al. // Cryst. Growth Des. 2008. V. 8. № 7. P. 2453. https://doi.org/10.1021/cg800034z
  37. Mitoudi Vagourdi E., Zhang W., Denisova K. et al. // ACS Omega. 2020. V. 5. № 10. P. 5235. https://doi.org/10.1021/acsomega.9b04288
  38. Yang B.-P., Sun C.-F., Hu C.-L., Mao J.-G. // Dalton Trans. 2011. V. 40. № 5. P. 1055. https://doi.org/10.1039/c0dt01272f
  39. Реутова О.В., Белоконева Е.Л., Димитрова О.В., Волков А.С. // Кристаллография. 2020. T. 65. № 3. C. 441. https://doi.org/10.31857/S0023476120030273
  40. Park G., Byun H.R., Jang J.I., Ok K.M. // Chem. Mater. 2020. V. 32. P. 3621. https://doi.org/10.1021/acs.chemmater.0c01054
  41. Xu X., Hu C.-L., Yang B.-P., Mao J.-G. // CrystEngComm. 2013. V. 15. № 38. P. 7776. https://doi.org/10.1039/C3CE41185K
  42. Белоконева Е.Л., Карамышева А.С., Димитрова О.В., Волков А.С. // Кристаллография. 2018. Т. 63. № 1. С. 59. https://doi.org/10.1134/S1063774518010029
  43. Gurbanova O.A., Belokoneva E.L. // Crystallography Reports. 2006. V. 51. P. 577. https://doi.org/10.1134/S1063774506040067
  44. CrysAlisPro Software System, Version 1.171.37.35. Agilent Technologies UK Ltd, Oxford, UK, 2014.
  45. Sheldrick G.M. // Acta Cryst. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  46. Brese N.E., O’Keeffe M. // Acta Cryst. B. 1991. V. 47. P. 192. https://doi.org/10.1107/S0108768190011041
  47. Brown I.D., Altermatt D. // Acta Cryst. B. 1985. V. 41. P. 244. https://doi.org/10.1107/S0108768185002063
  48. Groom C.R., Allen F.H. // Angew. Chem. Int. Ed. 2014. V. 53. P. 662. https://doi.org/10.1002/anie.201306438
  49. Momma K., Izumi F. // J. Appl. Cryst. 2011. V. 44. P. 1272. https://doi.org/10.1107/S0021889811038970
  50. Qian Z., Wu H., Yu H. et al. // Dalton Trans. 2020. V. 49. P. 8443. https://doi.org/10.1039/D0DT00593B
  51. Hector A.L., Henderson S.J., Levason W., Webster M. // Z. Anorg. Allg. Chem. 2002. V. 628. P. 198. https://doi.org/10.1002/1521-3749(200201)628:1<198::AID-ZAAC198>3.0.CO;2-L
  52. Yeon J., Kim S.-H., Halasyamani P.S. // J. Solid State Chem. 2009. V. 182. № 12. P. 3269. https://doi.org/10.1016/j.jssc.2009.09.021
  53. Belokoneva E.L., Reutova O.V., Dimitrova O.V. et al. // CrystEngComm. 2023. V. 25. P. 4364. https://doi.org/10.1039/D3CE00461A
  54. Chen X., Xue H., Chang X. et al. // J. Alloys Compd. 2005. V. 398. P. 173. https://doi.org/10.1016/j.jallcom.2005.01.050
  55. Hebboul Z., Galez C., Benbertal D. et al. // Crystals. 2019. V. 9. P. 464. https://doi.org/10.3390/cryst9090464
  56. Chikhaoui R., Hebboul Z., Fadla M.A. et al. // Nanomaterials. 2021. V. 11. № 12. P. 3289. http://doi.org/10.3390/nano11123289
  57. Reutova O., Belokoneva E., Volkov A., Dimitrova O. // Symmetry. 2023. V. 15. P. 1777. https://doi.org/10.3390/sym15091777

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Projection of the structure: lateral Cs2HIn(IO3)6 (a); trigonal Cs2HIn(IO3)6 along the ternary axis (b); triclinic Cs2HIn(IO3)6 along the ternary axis of the pseudorhombohedral cell (c).

下载 (295KB)
3. Fig. 2. Centrosymmetric blocks [M(IO3)6] with point symmetry with different configurations in the structures of iodates of the family: АnM(IO3)6 (A = Na, K, Rb, Cs, Ag, Tl+, H3O+, Ba, Sn2+; M = Ge, Ti, Pt, Sn, Zr, Mo4+, Ga, In) (a); AM(IO3)6 (A = Ba, Sr; M = Ti, Sn) (b); SrTi(IO3)6 2H2O (c); M(IO3)3 (M = In, Sc, Tl) (d); M(IO3)3 (M = In, Sc, Tl) – connection of blocks into a layer (e).

下载 (172KB)
4. Fig. 3. Acentric blocks [M(IO3)6] (M = Ge, Ti) with point symmetry 3 in the structures of aqueous iodates BaGe(IO3)6 H2O (a), BaTi(IO3)6 0.5H2O (b).

下载 (71KB)
5. Рис. 4. Блоки [Ta(IO3)6] и [Sc(IO3)6] с точечной псевдосимметрией 3 в структурах Cs3Ta(IO3)8 (а) и KSc(IO3)3Cl (б) соответственно, боковые проекции структур Cs3Ta(IO3)8 (в) и KSc(IO3)3Cl (г).

下载 (352KB)
6. Fig. 5. Block [Nb(IO3)6] with point symmetry 1 in the pseudotrigonal structure (H3O)HCs2Nb(IO3) (a); projection of the structure (H3O)HCs2Nb(IO3)9 onto the ac plane (b).

下载 (240KB)
7. Fig. 6. Configuration of the acentric [M(IO3)6] block (M = Li, Ti, Sn, Pt, Al, Cr, Fe3+, Ga, In, Mg, Mn2+, Zn, Cd, Co, Ni, Cu2+) with point symmetry 3 in the structures of hexagonal (space group P63) and pseudohexagonal (space group P21) iodates (a); rods of [Li(IO3)6] blocks in the framework of α-LiIO3 (b); rods of [M(IO3)6] blocks in the structures of the A2M(IO3)6 family (A = Li, Na, H3O+; M = Ti, Sn, Pt) (c); a framework of [M(IO3)6] blocks in the structures of the M(IO3)3 (M = Al, Cr, Fe3+, In, Ga) and M(IO3)2 (M = Mg, Zn, Co, Ni, Cu2+, Mn2+) families (d); a framework of [M(IO3)6] and [Li(IO3)6] blocks in the structures of the LiM(IO3)3 family (M = Mg, Zn, Cd) (e); a framework of alternating [Zn(IO3)6] and [Li(IO3)6] blocks in the structure of LiZn(IO3)3 (space group P21) (e).

下载 (322KB)
8. Fig. 7. [M(IO3)6] blocks with pseudosymmetry 2/m in the structures of α-K3In(IO3)6 and A3M(IO3) families (A = Na, K, Rb, Ag, Tl+; M = In, Tl, Fe3+, Mn3+) (a); 2/m in K3Sc(IO3)6 (b); m in Rb3Sc(IO3)6 (c).

下载 (118KB)
9. Fig. 8. The [In(IO3)6] block with symmetry 1 in the structure of NaIn(IO3)4 (a); 1 in AgIn(IO3)4 (b); projection of a chain of [In(IO3)6] blocks in the structures of NaIn(IO3)4 (c) and AgIn(IO3)4 (d).

下载 (158KB)
10. Fig. 9. Acentric block [M(IO3)6] with symmetry 1 in the structures of the AgM(IO3)4 family (M = Ga, Mn3+) (a); a chain of blocks in the structures of AgGa(IO3)4 (b) and AgMn(IO3)4 (c).

下载 (133KB)
11. Fig. 10. Centrosymmetric blocks [M(IO3)6] (M = Sn, In) with symmetry 1 (a); their connection into chains in the structures of Sn(IO3)4 and LiIn(IO3)4 (b).

下载 (73KB)
12. Fig. 11. Dimers [Mn2(IO3)10] (a); their connection into a framework in the structure of AgMn(IO3)3 (b).

下载 (139KB)
13. Fig. 12. Projection onto the ac plane of the Cs5[Sc2(IO3)9](IO3)2 structure with a framework of [Sc(IO3)6] blocks (a); individual [Sc(IO3)6] blocks with point symmetry 1 and 1 in the Cs5[Sc2(IO3)9](IO3)2 structure (b).

下载 (311KB)

版权所有 © Russian Academy of Sciences, 2024