Simulation of earth's radiation during solar proton events in the process of geomagnetic reversal

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The radiation from galactic and solar cosmic rays as they pass through the modern and rarefied (as a result of multiple reversals) atmosphere during solar proton events and at the time of geomagnetic reversal is studied. We assume that during the reversal process the geomagnetic field weakens and takes on an axisymmetric quadrupole configuration. It is shown that in the case of a single reversal, when the atmosphere does not have time to change, radiation dose powers increase only at low latitudes and are identical to the modern radiation at the poles. However, during the period of multiple inversions, when the atmosphere is rarefied, the level of radiation at the moment of reversal on the Earth's surface increases, on average, twice as much as today's radiation at all latitudes, which can affect the biosphere.

全文:

受限制的访问

作者简介

N. Levashov

Space Research Institute

编辑信件的主要联系方式.
Email: nn.levashov@physics.msu.ru
俄罗斯联邦, Moscow

O. Tsareva

Space Research Institute

Email: nn.levashov@physics.msu.ru
俄罗斯联邦, Moscow

V. Popov

Space Research Institute; Lomonosov Moscow State University; HSE University

Email: nn.levashov@physics.msu.ru

Физический факультет

俄罗斯联邦, Moscow; Moscow; Moscow

H. Malova

Space Research Institute; Lomonosov Moscow State University

Email: nn.levashov@physics.msu.ru

Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына

俄罗斯联邦, Moscow; Moscow

L. Zelenyi

Space Research Institute

Email: nn.levashov@physics.msu.ru
俄罗斯联邦, Moscow

参考

  1. Маурчев Е.А., Балабин Ю.В., Германенко А.В. и др. Влияние протонов космических лучей на образование вторичных частиц и ионизацию в атмосфере Земли // Труды Кольского научного центра РАН. 2019. Т. 10. № 8(5). С. 240–249. https://doi.org/10.25702/KSC.2307-5252.2019.10.8.240-249
  2. Snyder C.W., Neugebauer M., Rao U.R. The solar wind velocity and its correlation with cosmic ray variations and with solar and geomagnetic activity // J. Geophys Res. 1963. V. 68. Iss. 34. P. 6361–6370. https://doi.org/10.1029/JZ068i024p06361
  3. Криволуцкий А.А., Репнев А.И. Воздействие космических энергичных частиц на атмосферу земли (обзор) // Геомагнетизм и аэрономия. 2012. Т. 52. № 6. С. 723–754.
  4. Dehant V., Lammer H., Kulikov Y.N. et al. Planetary Magnetic Dynamo Effect on Atmospheric Protection of Early Earth and Mars // Space Science Reviews. 2007. V. 129(1–3). P. 279–300. https://doi.org/10.1007/s11214-007-9163-9
  5. Wei Y., Pu Z., Zong Q.-W. et al. Oxygen escape from the Earth during geomagnetic reversals: Implications to mass extinction // Earth and Planetary Science Letters. 2014.V. 394. P. 94–98. https://doi.org/10.1016/j.epsl.2014.03.018
  6. Царёва О.О., Зелёный Л.М., Малова Х.В. и др. Что ожидает человечество при инверсии магнитного поля Земли: угрозы мнимые и подлинные // Успехи физических наук. 2018. № 188. С. 207–220. https://doi.org/10.3367/UFNr.2017.07.038190
  7. Laurenza M., Consolini G., Storini M. et al. The Weibull functional form for SEP event spectra // J. Physics Conference Series. 2015. V. 632. Art.ID012066. https://doi.org/10.1088/1742-6596/632/1/012066
  8. Agostinelli S., Allisonas J., Amako K. et al. Geant4 – A Simulation Toolkit // Nuclear Instruments and Methods in Physics Research. 2003. V. 506. P. 250–303. https://doi.org/10.1016/S0168-9002(03)01368-8
  9. Allison J., Amako K., Apostolakis J. et al. Recent developments in geant4 // Nuclear Instruments and Methods in Physics Research. Section A. 2016. V. 835. P. 186–225. https://doi.org/10.1016/j.nima.2016.06.125
  10. Picone J., Hedin A.E., Drob D. et al. NRLMSISE-00 empirical model of the atmosphere: Statistical comparison and scientific issues // J. Geophysical Research. 2002. V. 107. Iss. A12. Art.ID. 1468. https://doi.org/10.1029/2002JA009430
  11. Störmer C. The polar Aurora. Oxford: Clarendon Press, 1955.
  12. Tsareva O.O. Generalization of Störmer theory for an axisymmetric superposition of dipole and quadrupole fields // J. Geophysical Research: Space Physics. 2019. V. 124. P. 2844–2853. https://doi.org/10.1029/2018JA026164
  13. Stadelmann A., Vogt J., Glassmeier K.H. et al. Cosmic ray and solar energetic particle flux in paleomagnetospheres // Earth Planets and Space. 2010. V. 62. P. 333–345. https://doi.org/10.5047/eps.2009.10.002
  14. Мурзин В. Астрофизика космических лучей. М.: Университетская книга; Логос, 2007.
  15. Glatzmaier G.A., Roberts P.H. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle // Physics of the Earth and Planetary Interiors. 1995. V. 91. Iss. 1. P. 63–75. https://doi.org/10.1016/0031-9201(95)03049-3
  16. Valet J.-P., Thevarasan A., Bassinot F. et al. Two records of relative paleointensity for the past 4 Myr. // Frontiers in Earth Science. 2020. V. 8. Iss. 148. https://doi.org/10.3389/feart.2020.00148
  17. Herrero-Bervera E., Valet J.-P. Absolute paleointensity and reversal records from the Waianae sequence (Oahu, Hawaii, USA) // Earth and Planetary Science Letters. 2005. V. 234. Iss. 1–2. P. 279–296. https://doi.org/10.1016/j.epsl.2005.02.032
  18. Poluianov S., Batalla O. Cosmic-ray atmospheric cutoff energies of polar neutron monitors // Advances in Space Research. 2022. V. 70. Iss. 9. P. 2610–2617. https://doi.org/10.1016/j.asr.2022.03.037
  19. Vogt J., Glassmeier K.H. On the location of trapped particle populations in quadrupole magnetospheres // J. Geophysical Research: Space Physics. 2000. V. 105. Iss. A6. P. 13063–13071. https://doi.org/10.1029/2000ja900006
  20. Berner R.A. Geological nitrogen cycle and atmospheric N2 over Phanerozoic time // Geology. 2006. V. 34. Iss. 5. Art.ID. 413. https://doi.org/10.1130/g22470.1
  21. Ilie R., Liemohn M.W. The outflow of ionospheric nitrogen ions: A possible tracer for the altitude dependent transport and energization processes of ionospheric plasma // J. Geophysical Research: Space Physics. 2016. V. 121. P. 9250–9255. https://doi.org/10.1002/2015JA022162
  22. Cannell A., Nel A. Paleo-air pressures and respiration of giant Odonatoptera from the Late Carboniferous to the Early Cretaceous // Palaeoentomology. 2023. V. 6. Iss. 4. https://doi.org/10.11646/palaeoentomology.6.4.6
  23. Sato T., Yasuda H., Niita K. et al. Development of PARMA: PHITS-based analytical radiation model in the atmosphere // Radiation research. 2008. V. 170. Iss. 2. P. 244–259. https://doi.org/10.1667/RR1094.1

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Spectra of primary GCR protons (black solid curve), alpha particles (red curve) of GCR during solar minimum and SPE protons (black dotted curve)

下载 (93KB)
3. Fig. 2. Dependence of temperature (black dotted curve) and pressure (red solid curve) of the modern atmosphere on altitude

下载 (81KB)
4. Fig. 3. Rigidity of the geomagnetic cutoff of axisymmetric dipole and quadrupole magnetic fields on magnetic latitude

下载 (71KB)
5. Fig. 4. Power of radiation doses from GCR at an altitude of 10 km for protons (a), neutrons (b), muons (c) and electrons (d)

下载 (290KB)
6. Fig. 5. Power of radiation doses from GCR on the Earth's surface for muons (a) and neutrons (b)

下载 (145KB)
7. Fig. 6. Power of total radiation doses from GCR at an altitude of 10 km (a), on the Earth's surface (b)

下载 (158KB)
8. Fig. 7. Power of radiation doses from SCR during SPE at an altitude of 10 km for protons (a), neutrons (b), electrons (c), total for all particles (d)

下载 (248KB)
9. Fig. 8. Power of radiation doses from SCR during SPE for neutrons on the Earth's surface

下载 (78KB)

版权所有 © Russian Academy of Sciences, 2025