Simulation of earth's radiation during solar proton events in the process of geomagnetic reversal
- 作者: Levashov N.N.1, Tsareva O.O.1, Popov V.Y.1,2,3, Malova H.V.1,2, Zelenyi L.M.1
-
隶属关系:
- Space Research Institute
- Lomonosov Moscow State University
- HSE University
- 期: 卷 63, 编号 1 (2025)
- 页面: 71-78
- 栏目: Articles
- URL: https://ter-arkhiv.ru/0023-4206/article/view/682927
- DOI: https://doi.org/10.31857/S0023420625010072
- EDN: https://elibrary.ru/HEAUSV
- ID: 682927
如何引用文章
详细
The radiation from galactic and solar cosmic rays as they pass through the modern and rarefied (as a result of multiple reversals) atmosphere during solar proton events and at the time of geomagnetic reversal is studied. We assume that during the reversal process the geomagnetic field weakens and takes on an axisymmetric quadrupole configuration. It is shown that in the case of a single reversal, when the atmosphere does not have time to change, radiation dose powers increase only at low latitudes and are identical to the modern radiation at the poles. However, during the period of multiple inversions, when the atmosphere is rarefied, the level of radiation at the moment of reversal on the Earth's surface increases, on average, twice as much as today's radiation at all latitudes, which can affect the biosphere.
全文:

作者简介
N. Levashov
Space Research Institute
编辑信件的主要联系方式.
Email: nn.levashov@physics.msu.ru
俄罗斯联邦, Moscow
O. Tsareva
Space Research Institute
Email: nn.levashov@physics.msu.ru
俄罗斯联邦, Moscow
V. Popov
Space Research Institute; Lomonosov Moscow State University; HSE University
Email: nn.levashov@physics.msu.ru
Физический факультет
俄罗斯联邦, Moscow; Moscow; MoscowH. Malova
Space Research Institute; Lomonosov Moscow State University
Email: nn.levashov@physics.msu.ru
Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына
俄罗斯联邦, Moscow; MoscowL. Zelenyi
Space Research Institute
Email: nn.levashov@physics.msu.ru
俄罗斯联邦, Moscow
参考
- Маурчев Е.А., Балабин Ю.В., Германенко А.В. и др. Влияние протонов космических лучей на образование вторичных частиц и ионизацию в атмосфере Земли // Труды Кольского научного центра РАН. 2019. Т. 10. № 8(5). С. 240–249. https://doi.org/10.25702/KSC.2307-5252.2019.10.8.240-249
- Snyder C.W., Neugebauer M., Rao U.R. The solar wind velocity and its correlation with cosmic ray variations and with solar and geomagnetic activity // J. Geophys Res. 1963. V. 68. Iss. 34. P. 6361–6370. https://doi.org/10.1029/JZ068i024p06361
- Криволуцкий А.А., Репнев А.И. Воздействие космических энергичных частиц на атмосферу земли (обзор) // Геомагнетизм и аэрономия. 2012. Т. 52. № 6. С. 723–754.
- Dehant V., Lammer H., Kulikov Y.N. et al. Planetary Magnetic Dynamo Effect on Atmospheric Protection of Early Earth and Mars // Space Science Reviews. 2007. V. 129(1–3). P. 279–300. https://doi.org/10.1007/s11214-007-9163-9
- Wei Y., Pu Z., Zong Q.-W. et al. Oxygen escape from the Earth during geomagnetic reversals: Implications to mass extinction // Earth and Planetary Science Letters. 2014.V. 394. P. 94–98. https://doi.org/10.1016/j.epsl.2014.03.018
- Царёва О.О., Зелёный Л.М., Малова Х.В. и др. Что ожидает человечество при инверсии магнитного поля Земли: угрозы мнимые и подлинные // Успехи физических наук. 2018. № 188. С. 207–220. https://doi.org/10.3367/UFNr.2017.07.038190
- Laurenza M., Consolini G., Storini M. et al. The Weibull functional form for SEP event spectra // J. Physics Conference Series. 2015. V. 632. Art.ID012066. https://doi.org/10.1088/1742-6596/632/1/012066
- Agostinelli S., Allisonas J., Amako K. et al. Geant4 – A Simulation Toolkit // Nuclear Instruments and Methods in Physics Research. 2003. V. 506. P. 250–303. https://doi.org/10.1016/S0168-9002(03)01368-8
- Allison J., Amako K., Apostolakis J. et al. Recent developments in geant4 // Nuclear Instruments and Methods in Physics Research. Section A. 2016. V. 835. P. 186–225. https://doi.org/10.1016/j.nima.2016.06.125
- Picone J., Hedin A.E., Drob D. et al. NRLMSISE-00 empirical model of the atmosphere: Statistical comparison and scientific issues // J. Geophysical Research. 2002. V. 107. Iss. A12. Art.ID. 1468. https://doi.org/10.1029/2002JA009430
- Störmer C. The polar Aurora. Oxford: Clarendon Press, 1955.
- Tsareva O.O. Generalization of Störmer theory for an axisymmetric superposition of dipole and quadrupole fields // J. Geophysical Research: Space Physics. 2019. V. 124. P. 2844–2853. https://doi.org/10.1029/2018JA026164
- Stadelmann A., Vogt J., Glassmeier K.H. et al. Cosmic ray and solar energetic particle flux in paleomagnetospheres // Earth Planets and Space. 2010. V. 62. P. 333–345. https://doi.org/10.5047/eps.2009.10.002
- Мурзин В. Астрофизика космических лучей. М.: Университетская книга; Логос, 2007.
- Glatzmaier G.A., Roberts P.H. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle // Physics of the Earth and Planetary Interiors. 1995. V. 91. Iss. 1. P. 63–75. https://doi.org/10.1016/0031-9201(95)03049-3
- Valet J.-P., Thevarasan A., Bassinot F. et al. Two records of relative paleointensity for the past 4 Myr. // Frontiers in Earth Science. 2020. V. 8. Iss. 148. https://doi.org/10.3389/feart.2020.00148
- Herrero-Bervera E., Valet J.-P. Absolute paleointensity and reversal records from the Waianae sequence (Oahu, Hawaii, USA) // Earth and Planetary Science Letters. 2005. V. 234. Iss. 1–2. P. 279–296. https://doi.org/10.1016/j.epsl.2005.02.032
- Poluianov S., Batalla O. Cosmic-ray atmospheric cutoff energies of polar neutron monitors // Advances in Space Research. 2022. V. 70. Iss. 9. P. 2610–2617. https://doi.org/10.1016/j.asr.2022.03.037
- Vogt J., Glassmeier K.H. On the location of trapped particle populations in quadrupole magnetospheres // J. Geophysical Research: Space Physics. 2000. V. 105. Iss. A6. P. 13063–13071. https://doi.org/10.1029/2000ja900006
- Berner R.A. Geological nitrogen cycle and atmospheric N2 over Phanerozoic time // Geology. 2006. V. 34. Iss. 5. Art.ID. 413. https://doi.org/10.1130/g22470.1
- Ilie R., Liemohn M.W. The outflow of ionospheric nitrogen ions: A possible tracer for the altitude dependent transport and energization processes of ionospheric plasma // J. Geophysical Research: Space Physics. 2016. V. 121. P. 9250–9255. https://doi.org/10.1002/2015JA022162
- Cannell A., Nel A. Paleo-air pressures and respiration of giant Odonatoptera from the Late Carboniferous to the Early Cretaceous // Palaeoentomology. 2023. V. 6. Iss. 4. https://doi.org/10.11646/palaeoentomology.6.4.6
- Sato T., Yasuda H., Niita K. et al. Development of PARMA: PHITS-based analytical radiation model in the atmosphere // Radiation research. 2008. V. 170. Iss. 2. P. 244–259. https://doi.org/10.1667/RR1094.1
补充文件
