Bulk condensation at intensive evaporation from interfacial surface

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An iterative approach to analyzing the interaction between the processes of intensive evaporation and bulk condensation near the evaporation surface is proposed. This approach employs the results of the numerical solution of the Boltzmann kinetic equation for intensive evaporation from the interfacial surface to calculate the kinetics of the bulk condensation process near the evaporation surface. It is demonstrated that during the period of supersaturation predicted on the basis of the solution that does not consider condensation, the condensation aerosol has sufficient time to form. The results indicate that the formation of droplets near the evaporation surface and the thermal effect of condensation on the vapor parameters should be incorporated into the analysis of intense evaporation from the interfacial surface.

Texto integral

Acesso é fechado

Sobre autores

N. Kortsenshteyn

Объединенный институт высоких температур РАН; Научно-исследовательский институт механики Московского государственного университета им. М. В. Ломоносова

Email: akyastrebov@yandex.ru
Rússia, Ижорская ул., 13, стр. 2, Москва, 125412; Мичуринский пр., 1, Москва, 119192

L. Petrov

Научно-исследовательский институт механики Московского государственного университета им. М. В. Ломоносова; Национальный исследовательский центр «Курчатовский институт»

Email: akyastrebov@yandex.ru
Rússia, Мичуринский пр., 1, Москва, 119192; пл. Академика Курчатова, 1, Москва, 123182

A. Rudov

Национальный исследовательский университет «МЭИ»

Email: akyastrebov@yandex.ru
Rússia, Красноказарменная ул., 14, Москва, 111250

A. Yastrebov

Научно-исследовательский институт механики Московского государственного университета им. М. В. Ломоносова; Национальный исследовательский университет «МЭИ»

Autor responsável pela correspondência
Email: akyastrebov@yandex.ru
Rússia, Мичуринский пр., 1, Москва, 119192; Красноказарменная ул., 14, Москва, 111250

Bibliografia

  1. Labuntsov D.A., Kryukov A.P. Analysis of intensive evaporation and condensation // Int. J. Heat Mass Transf. 1979. V. 22. P. 989–1002. https://doi.org/10.1016/0017-9310(79)90172-8
  2. Анисимов С.И., Имас Я.А., Романов Г.С., Ходыко Ю.В. Действие излучения большой мощности на металлы. М.: Наука. 1970.
  3. Fang G., Ward C. A. Temperature measured close to the interface of an evaporating liquid // Phys. Rev. E. 1999. V. 59. P. 417–428. https://doi.org/10.1103/PhysRevE.59.417
  4. Badam V.K., Kumar V., Durst F., Danov K. Experimental and theoretical investigations on interfacial temperature jumps during evaporation // Exp. Therm. Fluid Sci. 2007. V. 32. P. 276–292. https://doi.org/10.1016/j.expthermflusci.2007.04.006
  5. Fei Duan, Ward C.A., Badam V.K., Durst F. Role of molecular phonons and interfacial-temperature discontinuities in water evaporation // Phys. Rev. E. 2008. V. 78. P. 04130. https://doi.org/10.1103/PhysRevE.78.041130
  6. Sone Y., Ohwada T., Aoki K. Evaporation and condensation on a plane condensed phase: Numerical analysis of the linearized Boltzmann equation for hard-sphere molecules // Phys. Fluids. 1989. V. 1. P. 1398–1405. https://doi.org/10.1063/1.857316
  7. Rokoni A., Sun Y. Probing the temperature profile across a liquid–vapor interface upon phase change // J. Chem. Phys. 2020. V. 153. P.144706. https://doi.org/10.1063/5.0024722
  8. Chen G. On paradoxical phenomena during evaporation and condensation between two parallel plates // J. Chem. Phys. 2023. V. 159. P. 151101. https://doi.org/10.48550/arXiv.2308.02661
  9. Chen G. Interfacial cooling and heating, temperature discontinuity and inversion in evaporation and condensation // Int. J. Heat Mass Transf. 2024. V. 218. P. 124762. https://doi.org/10.48550/arXiv.2307.16043
  10. Аристов В.В., Черемисин Ф.Г. Прямое численное решение кинетического уравнения Больцмана. М.: Вычислительный центр РАН. 1992.
  11. Левашов В. Ю., Крюков А. П., Шишкова И. Н. Влияние гомогенной нуклеации на интенсивность процессов испарения/конденсации // Коллоидный журнал. 2024. Т. 86. № 2. С. 218–226.
  12. Коган М.Н. Динамика разреженного газа. М.: Наука. 1967.
  13. Черемисин Ф.Г. Консервативный метод вычисления интеграла столкновений Больцмана // Доклады Академии наук. 1997. Т. 357. № 1. С. 53–56.
  14. Ястребов А.К. Об использовании неравновесных граничных условий для исследования конденсации при внезапном контакте холодной жидкости и насыщенного пара // Известия Академии наук. Энергетика. 2010. № 6. С. 21–29.
  15. Jianhua Huang. A simple accurate formula for calculating saturation vapor pressure of water and ice // J. Appl. Meteorol. Climatol. 2018. V. 57. P. 1265–1272. https://doi.org/10.1175/JAMC-D-17-0334.1
  16. NIST Chemistry WebBook, SRD 69. Argon. https://webbook.nist.gov/cgi/cbook.cgi?ID=C7440371&Mask=4#Thermo-Phase
  17. NIST Chemistry WebBook, SRD 69. Nitrogen. https://webbook.nist.gov/cgi/cbook.cgi?ID=C7727379&Mask=4#Thermo-Phase
  18. Kortsenshteyn N.M., Gerasimov G.Ya., Petrov L.V., Shmel’kov Yu.B. A software package for simulating physicochemical processes and properties of working fluids // Therm. Eng. 2020. V. 67. P. 591–603. https://doi.org/10.1134/S0040601520090049
  19. Стернин Л.Е. Основы газодинамики двухфазных течений в соплах. М.: Машиностроение. 1974.
  20. Kashchiev D. Nucleation. Basic theory with applications. Oxford: Butterworth-Heinemann. 2000.
  21. Александров А.А., Григорьев Б.А. Таблицы теплофизических свойств воды и водяного пара. М.: МЭИ. 1999.
  22. Fuchs N.A. Evaporation and droplet growth in gaseous media. New York: Pergamon Press. 1959.
  23. Kortsenshteyn N.M., Yastrebov A.K. Interphase heat transfer during bulk condensation in the flow of vapor – gas mixture // Int. J. Heat Mass Transf. 2012. V. 55. P. 1133–1140. https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.059
  24. Kortsenshteyn N.M., Samuilov E.V., Yastrebov A.K. About use of a method of direct numerical solution for simulation of bulk condensation of supersaturated vapor // Int. J. Heat Mass Transf. 2009. V. 52. P. 548–556. https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.033
  25. Корценштейн Н.М., Самуйлов Е.В., Ястребов А.К. О влиянии зависимости давления насыщенного пара от размера капель на динамику процесса конденсационной релаксации пересыщенного пара // Доклады Академии наук, 2007. Т. 415. № 4. С. 469–474.
  26. Zhakhovsky V.V., Kryukov A.P., Levashov V.Yu., Shishkova I.N., Anisimov S.I. Mass and heat transfer between evaporation and condensation surfaces: Atomistic simulation and solution of Boltzmann kinetic equation // Proc. Natl. Acad. Sci. 2019. V. 116. P. 18209–18217. https://doi.org/10.1073/pnas.1714503115
  27. Kortsenshteyn N.M., Levashov V.Y, Yastrebov A.K., Petrov L.V. Numerical simulation of homogeneous-heterogeneous condensation and interphase heat transfer in a dusty vapour-gas flow: Controlling the homogeneous condensation process // Int. J. Therm. Sci. 2024. V. 200. P. 108966. https://doi.org/10.1016/j.ijthermalsci.2024.108966
  28. Pathak H., Wölk J., Strey R., Wyslouzil B. Co-condensation of nonane and D2O in a supersonic nozzle // J. Chem. Phys. 2014. V. 140. P. 034304. https://doi.org/10.1063/1.4861052
  29. Крюков А.П., Левашов В.Ю., Шишкова И.Н. Исследование течений газопылевой смеси методами молекулярно-кинетической теории // Инженерно-физический журнал. 2002. Т. 75. № 4.
  30. Корценштейн Н.М., Петров Л.В., Рудов А.В., Ястребов А.К. Численное моделирование объемной конденсации пара вблизи межфазной поверхности при интенсивном испарении // Физико-химическая кинетика в газовой динамике. 2023. Т. 24. № 5. С. 84–95.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of the problem of intensive evaporation.

Baixar (63KB)
3. Fig. 2. Dependences of pressure and temperature on the coordinate at different moments in time.

Baixar (171KB)
4. Fig. 3. Dependence of the maximum degree of supersaturation and the ratio of saturation pressures at surface temperatures on the ratio of surface temperatures.

Baixar (104KB)
5. Fig. 4. Dependences of pressure and degree of supersaturation on the coordinate at different moments in time for water at an initial temperature of 273.15 K, Тhot/ Тcold = 1.1 (solid lines – uneven grid, dashed lines – uniform grid).

Baixar (191KB)
6. Fig. 5. Dependences of temperature and degree of supersaturation on time at x* = 5 for water at different values ​​of initial temperature and Тhot/ Тcold = 1.1.

Baixar (217KB)
7. Fig. 6. Degree of supersaturation of water vapor near the interface during intense evaporation. Dashed lines – solution of the CUBE without taking into account volume condensation, solid lines – taking into account. Black lines – Tcold =273.15 K, blue lines – Tcold =293.15 K, red lines – Tcold =313.15 K.

Baixar (100KB)
8. Fig. 7. Parameters of condensation aerosol formed near the interface during intense evaporation. Solid lines – mass fraction of droplets, dashed lines – number concentration of droplets. Line colors correspond to the caption to Fig. 6.

Baixar (113KB)
9. Fig. 8. Change in water vapor temperature near the interphase surface during intensive evaporation. Dashed lines are the solution of the CUBE without taking into account volume condensation, solid lines are taking it into account. The colors of the lines correspond to the caption to Fig. 6.

Baixar (100KB)
10. Fig. 9. The effect of the TG value on the change in the degree of supersaturation during volume condensation of water vapor near the interphase surface (x* = 5) during intense evaporation. Tcold = 293.15 K.

Baixar (92KB)
11. Fig. 10. The effect of the TG value on the change in the parameters of the condensation aerosol formed near the interphase surface during intensive evaporation of water vapor. Tcold = 293.15 K.

Baixar (89KB)
12. Fig. 11. The effect of the TG value on the temperature change during volume condensation of water vapor near the interphase surface (x* = 5) during intense evaporation. Tcold = 293.15 K.

Baixar (107KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024