Surface modifiers for reducing bacterial contamination in medicine and food industry
- Authors: Cherednichenko Y.V.1, Ishmukhametov I.R.1, Fakhrullina G.I.1
-
Affiliations:
- Казанский (Приволжский) федеральный университет
- Issue: Vol 87, No 1 (2025)
- Pages: 59-75
- Section: Articles
- Submitted: 28.05.2025
- Published: 24.01.2025
- URL: https://ter-arkhiv.ru/0023-2912/article/view/680865
- DOI: https://doi.org/10.31857/S0023291225010075
- EDN: https://elibrary.ru/USCCCX
- ID: 680865
Cite item
Abstract
Antibacterial coatings are used in the food and textile industries, in the construction industry, in biotechnology and medicine. The review considers the main types of coatings that prevent fouling with biomacromolecules and microorganisms: anti-adhesive, contact, release-based, multifunctional and intelligent (“smart”) coatings. For each type of coating, the most relevant and effective active substances and their mechanism of action are described. Despite the widespread use of anti-adhesive surfaces and contact coatings, they have many disadvantages that limit the scope of their application and reduce activity and durability. Numerous studies show that multifunctional and intelligent coatings have high potential for practical application and further research on their modification to obtain universal and cost-effective coatings. The main problem of the practical application of such surfaces is the imperfection of methods for assessing the stability and antibacterial properties of the coating in laboratory conditions.
Full Text

About the authors
Yu. V. Cherednichenko
Казанский (Приволжский) федеральный университет
Author for correspondence.
Email: serova.yuliya87@gmail.com
Институт фундаментальной медицины и биологии
Russian Federation, 420008, РТ, Казань, ул. Кремлевская, д. 18I. R. Ishmukhametov
Казанский (Приволжский) федеральный университет
Email: serova.yuliya87@gmail.com
Институт фундаментальной медицины и биологии
Russian Federation, 420008, РТ, Казань, ул. Кремлевская, д. 18G. I. Fakhrullina
Казанский (Приволжский) федеральный университет
Email: serova.yuliya87@gmail.com
Институт фундаментальной медицины и биологии
Russian Federation, 420008, РТ, Казань, ул. Кремлевская, д. 18References
- Jiang C.C., Cao Y.K., Xiao G.Y. et al. A review on the application of inorganic nanoparticles in chemical surface coatings on metallic substrates // RSC Advances. 2017. V. 7. № 13. P. 7531–7539. https://doi.org/10.1039/C6RA25841G
- Kausar A. Polymer coating technology for high performance applications: Fundamentals and advances // Journal of Macromolecular Science, Part A. 2018. V. 55. № 5. P. 440–448. https://doi.org/10.1080/10601325.2018.1453266
- Makvandi P., Wang C.Y., Zare E.N. et al. Metal-based nanomaterials in biomedical applications: Antimicrobial activity and cytotoxicity aspects // Advanced Functional Materials. 2020. V. 30. № 22. P. 1910021. https://doi.org/10.1002/adfm.201910021
- Erkoc P., Ulucan-Karnak F. Nanotechnology-based antimicrobial and antiviral surface coating strategies // Prosthesis. 2021. V. 3. № 1. P. 25–52. https://doi.org/10.3390/prosthesis3010005
- Wei T., Yu Q., Chen H. Responsive and synergistic antibacterial coatings: Fighting against bacteria in a smart and effective way // Advanced Healthcare Materials. 2019. V. 8. № 3. P. 18001381. https://doi.org/10.1002/adhm.201801381
- DeFlorio W., Liu S., White A.R. et al. Recent developments in antimicrobial and antifouling coatings to reduce or prevent contamination and cross‐contamination of food contact surfaces by bacteria // Comprehensive Reviews in Food Science and Food Safety. 2021. V. 20. № 3. P. 3093–3134. https://doi.org/10.1111/1541-4337.12750
- Wang L., Guo X., Zhang H. et al. Recent advances in superhydrophobic and antibacterial coatings for biomedical materials // Coatings. 2022. V. 12. № 10. P. 1469. https://doi.org/10.3390/coatings12101469
- Rezić I., Meštrović E. Characterization of nanoparticles in antimicrobial coatings for medical applications – A review // Coatings. 2023. V. 13. № 11. P. 1830. https://doi.org/10.3390/coatings13111830
- Blair J.M., Webber M.A., Baylay A.J. et al. Molecular mechanisms of antibiotic resistance // Nature reviews microbiology. 2015. V. 13. № 1. P. 42–51. https://doi.org/10.1038/nrmicro3380
- Давидович Н.В., Кукалевская Н.Н., Башилова Е.Н., Бажукова Т.А. Основные принципы эволюции антибиотикорезистентности у бактерий (обзор литературы) // Клиническая лабораторная диагностика. 2020. Т. 65. № 6. С. 387–393. http://dx.doi.org/10.18821/0869-2084-2020-65-6-387-393
- Urban-Chmiel R., Marek A., Stępień-Pyśniak D. et al. Antibiotic resistance in bacteria – A review // Antibiotics. 2022. V. 11. № 8. P. 1079. https://doi.org/10.3390/antibiotics11081079
- Cherednichenko Y., Batasheva S., Akhatova F. et al. Antibiofilm activity of silver nanoparticles-halloysite nanocomposite in Serratia marcescens // Journal of Nanoparticle Research. 2024. V. 26. № 4. P. 71. https://doi.org/10.1007/s11051-024-05971-y
- Stewart P.S., Costerton J.W. Antibiotic resistance of bacteria in biofilms // The lancet. 2001. V. 358. № 9276. P. 135–138. https://doi.org/10.1016/S0140-6736(01)05321-1
- Чеботарь И.В., Маянский А.Н., Кончакова Е.Д. и др. Антибиотикорезистентность биоплёночных бактерий // Клиническая микробиология и антимикробная химиотерапия. 2012. Т. 14. №. 1. С. 51–58.
- De Silva R.T., Pasbakhsh P., Lee S.M., Kit A.Y. ZnO deposited / Encapsulated halloysite–poly (lactic acid) (PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties // Applied Clay Science. 2015. V. 111. P. 10–20. https://doi.org/10.1016/j.clay.2015.03.024
- Karthikeyan P., Mitu L., Pandian K. et al. Electrochemical deposition of a Zn-HNT / P (EDOT-co-EDOP) nanocomposite on LN SS for anti-bacterial and anti-corrosive applications // New Journal of Chemistry. 2017. V. 41. № 12. P. 4758–4762. https://doi.org/10.1039/C6NJ03927H
- Stavitskaya A., Batasheva S., Vinokurov V. et al. Antimicrobial applications of clay nanotube-based composites // Nanomaterials. 2019. V. 9. № 5. P. 708. https://doi.org/10.3390/nano9050708
- Mauriello G. Chapter 11 - Control of microbial activity using antimicrobial packaging // Barros-Velazquez J. (ed). Antimicrobial Food Packaging. London, San Diego, USA: Academic Press. 2016. P. 141–152. https://doi.org/10.1016/B978-0-12-800723-5.00011-5
- Valencia-Chamorro S.A., Palou L., Del Río M.A., Pérez-Gago M.B. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review // Critical Reviews in Food Science and Nutrition. 2011. V. 51. № 9. P. 872–900. https://doi.org/10.1080/10408398.2010.485705
- Malhotra B., Keshwani A., Kharkwal H. Antimicrobial food packaging: Potential and pitfalls // Frontiers in microbiology. 2015. V. 6. P. 611. https://doi.org/10.3389/fmicb.2015.00611
- Fu Y., Dudley E.G. Antimicrobial-coated films as food packaging: A review // Comprehensive Reviews in Food Science and Food Safety. 2021. V. 20. № 4. P.3404−3437. https://doi.org/10.1111/1541-4337.12769
- Pemmada R., Shrivastava A., Dash M. et al. Science-based strategies of antibacterial coatings with bactericidal properties for biomedical and healthcare settings // Current Opinion in Biomedical Engineering. 2023. V. 25. P. 100442. https://doi.org/10.1016/j.cobme.2022.100442
- Paladini F., Pollini M., Sannino A., Ambrosio L. Metal-based antibacterial substrates for biomedical applications // Biomacromolecules. 2015. V. 16. № 7. P. 1873–1885. https://doi.org/10.1021/acs.biomac.5b00773
- Jose A., Gizdavic-Nikolaidis M., Swift S. Antimicrobial coatings: reviewing options for healthcare applications // Applied Microbiology. 2023. V. 3. № 1. P. 145–174. https://doi.org/10.3390/applmicrobiol3010012
- Adlhart C., Verran J., Azevedo N.F. et al. Surface modifications for antimicrobial effects in the healthcare setting: A critical overview // Journal of Hospital Infection. 2018. V. 99. № 3. P. 239–249. https://doi.org/10.1016/j.jhin.2018.01.018
- Simchi A., Tamjid E., Pishbin F., Boccaccini A.R. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications // Nanomedicine: Nanotechnology, Biology and Medicine. 2011. V. 7. № 1. P. 22–39. https://doi.org/10.1016/j.nano.2010.10.005
- Chen X., Zhou J., Qian Y., Zhao L. Antibacterial coatings on orthopedic implants // Materials Today Bio. 2023. V. 19. P. 100586. https://doi.org/10.1016/j.mtbio.2023.100586
- Andra S., Balu S.K., Jeevanandam J., Muthalagu M. Emerging nanomaterials for antibacterial textile fabrication // Naunyn-Schmiedeberg’s Archives of Pharmacology. 2021. V. 394. P. 1355–1382. https://doi.org/10.1007/s00210-021-02064-8
- Dastjerdi R., Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties // Colloids and Surfaces B: Biointerfaces. 2010. V. 79. № 1. P. 5–18. https://doi.org/10.1016/j.colsurfb.2010.03.029
- Aguda O.N., Lateef A. Recent advances in functionalization of nanotextiles: A strategy to combat harmful microorganisms and emerging pathogens in the 21st century // Heliyon. 2022. V. 8. №. 6. P. e09761. https://doi.org/10.1016/j.heliyon.2022.e09761
- Hochmannova L., Vytrasova J. Photocatalytic and antimicrobial effects of interior paints // Progress in Organic Coatings. 2010. V. 67. № 1. P. 1–5. https://doi.org/10.1016/j.porgcoat.2009.09.016
- Kocer H. B., Cerkez I., Worley S.D. et al. N-halamine copolymers for use in antimicrobial paints // ACS Applied Materials & Interfaces. 2011. V. 3. № 8. P. 3189–3194. https://doi.org/10.1021/am200684u
- Kirthika S.K., Goel G., Matthews A., Goel S. Review of the untapped potentials of antimicrobial materials in the construction sector // Progress in Materials Science. 2023. V. 133. P. 101065. https://doi.org/10.1016/j.pmatsci.2022.101065
- Gupta S., Puttaiahgowda Y.M., Nagaraja A., Jalageri M.D. Antimicrobial polymeric paints: An up-to-date review // Polymers for Advanced Technologies. 2021. V. 32. № 12. P. 4642–4662. https://doi.org/10.1002/pat.5485
- Tornero A.F., Blasco M.G., Azqueta M.C. et al. Antimicrobial ecological waterborne paint based on novel hybrid nanoparticles of zinc oxide partially coated with silver // Progress in Organic Coatings. 2018. V. 121. P. 130–141. https://doi.org/10.1016/j.porgcoat.2018.04.018
- Bakina O., Pikuschak E., Prokopchuk A. et al. Enhanced Biocidal Activity of Heterophase Zinc Oxide/Silver Nanoparticles Contained within Painted Surfaces // Coatings. 2024. V. 14. № 2. P. 241. https://doi.org/10.3390/coatings14020241
- Vasilev K., Cook J., Griesser H.J. Antibacterial surfaces for biomedical devices // Expert Review of Medical Devices. 2009. V. 6. № 5. P. 553–567. https://doi.org/10.1586/erd.09.36
- Cavallaro A., Taheri S., Vasilev K. Responsive and “smart” antibacterial surfaces: Common approaches and new developments // Biointerphases. 2014. V. 9. № 2. P. 029005. https://doi.org/10.1116/1.4866697
- Godoy-Gallardo M., Wang Z., Shen Y. et al. Antibacterial coatings on titanium surfaces: A comparison study between in vitro single-species and multispecies biofilm // ACS Applied Materials & Interfaces. 2015. V. 7. № 10. P. 5992–6001. https://doi.org/10.1021/acsami.5b00402
- Bharadishettar N., Bhat K.U., Bhat Panemangalore D. Coating technologies for copper based antimicrobial active surfaces: A perspective review // Metals. 2021. V. 11. № 5. P. 711. https://doi.org/10.3390/met11050711
- Ferreira T.P.M., Nepomuceno N.C., Medeiros E.L. et al. Antimicrobial coatings based on poly (dimethyl siloxane) and silver nanoparticles by solution blow spraying // Progress in Organic Coatings. 2019. V. 133. P. 19–26. https://doi.org/10.1016/j.porgcoat.2019.04.032
- Yu K., Lo J. C., Yan M. et al. Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model // Biomaterials. 2017. V. 116. P. 69–81. https://doi.org/10.1016/j.biomaterials.2016.11.047
- Keum H., Kim J.Y., Yu B. et al. Prevention of bacterial colonization on catheters by a one-step coating process involving an antibiofouling polymer in water // ACS Applied Materials & Interfaces. 2017. V. 9. № 23. P. 19736–19745. https://doi.org/10.1021/acsami.7b06899
- Li X., Li P., Saravanan R. et al. Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties // Acta Biomaterialia. 2014. V. 10. № 1. P. 258–266. https://doi.org/10.1016/j.actbio.2013.09.009
- Banerjee I., Pangule R.C., Kane R.S. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms // Advanced Materials. 2011. V. 23. № 6. P. 690–718. https://doi.org/10.1002/adma.201001215
- Raphel J., Holodniy M., Goodman S.B., Heilshorn S.C. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants // Biomaterials. 2016. V. 84. P. 301–314. https://doi.org/10.1016/j.biomaterials.2016.01.016
- Liao T.Y., Easton C.D., Thissen H., Tsai, W.B. Aminomalononitrile-assisted multifunctional antibacterial coatings // ACS Biomaterials Science & Engineering. 2020. V. 6. № 6. P. 3349–3360. https://doi.org/10.1021/acsbiomaterials.0c00148
- Li C. B., Wang F., Sun R. Y. et al. A multifunctional coating towards superhydrophobicity, flame retardancy and antibacterial performances // Chemical Engineering Journal. 2022. V. 450. P. 138031. https://doi.org/10.1016/j.cej.2022.138031
- Ni X., Li C., Lei Y. et al. Design of a smart self-healing coating with multiple-responsive superhydrophobicity and its application in antibiofouling and antibacterial abilities // ACS Applied Materials & Interfaces. 2021. V. 13. № 48. P. 57864–57879. https://doi.org/10.1021/acsami.1c15239
- Li X., Wu B., Chen H. et al. Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections // Journal of Materials Chemistry B. 2018. V. 6. № 26. P. 4274–4292. https://doi.org/10.1039/C8TB01245H
- Wei T., Yu Q., Zhan W., Chen H. A smart antibacterial surface for the on-demand killing and releasing of bacteria // Advanced Healthcare Materials. 2016. V. 5. № 4. P. 449–456. https://doi.org/10.1002/adhm.201500700
- Olmo JA-D., Ruiz-Rubio L., Pérez-Alvarez L. et al. Antibacterial coatings for improving the performance of biomaterials // Coatings. 2020. V. 10. № 2. P. 139. https://doi.org/10.3390/coatings10020139
- Jose A., Gizdavic-Nikolaidis M., Swift S. Antimicrobial coatings: Reviewing options for healthcare applications // Applied Microbiology. 2023. V. 3. № 1. P. 145–174. https://doi.org/10.3390/applmicrobiol3010012
- Yebra D.M., Kiil S., Dam-Johansen K. Antifouling technology – Past, present and future steps towards efficient and environmentally friendly antifouling coatings // Progress in Organic Coatings. 2004. V. 50. № 2. P. 75–104. https://doi.org/10.1016/j.porgcoat.2003.06.001
- Li L., Hong H., Cao J., Yang Y. Progress in marine antifouling coatings: Current status and prospects //Coatings. 2023. V. 13. № 11. P. 1893. https://doi.org/10.3390/coatings13111893
- Francis W.J. Shipbottom paints. Past, present and future research and development on anticorrosive and antifouling shipbottom compositions // Journal of the American Society for Naval Engineers. 1954. V. 66. № 4. P. 857–866. https://doi.org/10.1111/j.1559-3584.1954.tb05931.x
- Van Kerk G.J.M.D., Luijten J.G.A. Investigations on organo‐tin compounds. III. The biocidal properties of organo‐tin compounds //Journal of Applied Chemistry. 1954. V. 4. № 6. P. 314–319. https://doi.org/10.1002/jctb.5010040607
- Hazziza-Laskar J., Helary G., Sauvet G. Biocidal polymers active by contact. IV. Polyurethanes based on polysiloxanes with pendant primary alcohols and quaternary ammonium groups // Journal of Applied Polymer Science. 1995. V. 58. № 1. P. 77–84. https://doi.org/10.1002/app.1995.070580108
- Jansen B., Kohnen W. Prevention of biofilm formation by polymer modification // Journal of Industrial Microbiology. 1995. V. 15. № 4. P. 391–396. https://doi.org/10.1007/BF01569996
- Lowe A.B., Vamvakaki M., Wassall M.A. et al. Well‐defined sulfobetaine-based statistical copolymers as potential antibioadherent coatings // Journal of Biomedical Materials Research. 2000. V. 52. № 1. P. 88–94. https://doi.org/10.1002/1097-4636(200010)52:1%3C88::AID-JBM11%3E3.0.CO;2-%23
- Mu M., Wang X., Taylor M. et al. Multifunctional coatings for mitigating bacterial fouling and contamination // Colloid and Interface Science Communications. 2023. V. 55. P. 100717. https://doi.org/10.1016/j.colcom.2023.100717
- Cheng G., Xue H., Zhang Z. et al. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities // Angewandte Chemie International Edition. 2008. V. 47. № 46. P. 8831–8834. https://doi.org/10.1002/anie.200803570
- Yu Q., Cho J., Shivapooja P. et al. Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria // ACS Applied Materials & Interfaces. 2013. V. 5. № 19. P. 9295–9304. https://doi.org/10.1021/am4022279
- Qu Y., Wei T., Zhao J. et al. Regenerable smart antibacterial surfaces: Full removal of killed bacteria via a sequential degradable layer // Journal of Materials Chemistry B. 2018. V. 6. № 23. P. 3946–3955. https://doi.org/10.1039/C8TB01122B
- Liu Y., Zhang D., Tang Y. et al. Machine learning-enabled repurposing and design of antifouling polymer brushes //Chemical Engineering Journal. 2021. V. 420. P. 129872. https://doi.org/10.1016/j.cej.2021.129872
- Kaur R., Liu S. Antibacterial surface design – Contact kill // Progress in Surface Science. 2016. V. 91. № 3. P. 136–153. https://doi.org/10.1016/j.progsurf.2016.09.001
- Nasri N., Rusli A., Teramoto N. et al. Past and current progress in the development of antiviral / Antimicrobial polymer coating towards COVID-19 prevention: A Review // Polymers. 2021. V. 13. № 23. P. 4234. https://doi.org/10.3390/polym13234234
- Pan C., Zhou Z., Yu X. Coatings as the useful drug delivery system for the prevention of implant-related infections // Journal of Orthopaedic Surgery and Research. 2018. V. 13. P. 220. https://doi.org/10.1186/s13018-018-0930-y
- Elena P., Miri K. Formation of contact active antimicrobial surfaces by covalent grafting of quaternary ammonium compounds // Colloids and Surfaces B: Biointerfaces. 2018. V. 169. P. 195–205. https://doi.org/10.1016/j.colsurfb.2018.04.065
- Yu K., Alzahrani A., Khoddami S. et al. Rapid assembly of infection-resistant coatings: Screening and identification of antimicrobial peptides works in cooperation with an antifouling background // ACS Applied Materials & Interfaces. 2021. V. 13. № 31. P. 36784–36799. https://doi.org/10.1021/acsami.1c07515
- Alves D., Olívia Pereira M. Mini-review: Antimicrobial peptides and enzymes as promising candidates to functionalize biomaterial surfaces // Biofouling. 2014. V. 30. № 4. P. 483–499. https://doi.org/10.1080/08927014.2014.889120
- Qu B., Luo Y. A review on the preparation and characterization of chitosan-clay nanocomposite films and coatings for food packaging applications // Carbohydrate Polymer Technologies and Applications. 2021. V. 2. P. 100102. https://doi.org/10.1016/j.carpta.2021.100102
- Li W., Thian E.S., Wang M. et al. Surface design for antibacterial materials: From fundamentals to advanced strategies // Advanced Science. 2021. V. 8. № 19. P. 2100368. https://doi.org/10.1002/advs.202100368
- Shahid A., Aslam B., Muzammil S., et al. The prospects of antimicrobial coated medical implants // Journal of Applied Biomaterials & Functional Materials. 2021. V. 19. P. 22808000211040304. https://doi.org/10.1177/22808000211040304
- Campoccia D., Montanaro L., Arciola C.R. A review of the biomaterials technologies for infection-resistant surfaces // Biomaterials. 2013. V. 34. № 34. P. 8533–8554. https://doi.org/10.1016/j.biomaterials.2013.07.089
- Zilberman M., Elsner J.J. Antibiotic-eluting medical devices for various applications // Journal of Controlled Release. 2008. V. 130. № 3. P. 202–215. https://doi.org/10.1016/j.jconrel.2008.05.020
- Batoni G., Maisetta G., Esin S. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria // Biochimica et Biophysica Acta (BBA) - Biomembranes. 2016. V. 1858. № 5. P. 1044–1060. https://doi.org/10.1016/j.bbamem.2015.10.013
- Chen R., Shi C., Xi Y. et al. Fabrication of cationic polymer surface through plasma polymerization and layer-by-layer assembly // Materials and Manufacturing Processes. 2020. V. 35. № 2. P. 221–229. https://doi.org/10.1080/10426914.2019.1675892
- Li J., Zhuang S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives // European Polymer Journal. 2020. V. 138. P. 109984. https://doi.org/10.1016/j.eurpolymj.2020.109984
- Wrońska N., Katir N., Miłowska K. et al. Antimicrobial effect of chitosan films on food spoilage bacteria // International Journal of Molecular Sciences. 2021. V. 22. № 11. P. 5839. https://doi.org/10.3390/ijms22115839
- Thallinger B., Prasetyo E.N., Nyanhongo G.S., Guebitz G.M. Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms // Biotechnology Journal. 2013. V. 8. № 1. P. 97–109. https://doi.org/10.1002/biot.201200313
- Campoccia D., Montanaro L., Arciola C.R. A review of the biomaterials technologies for infection-resistant surfaces //Biomaterials. 2013. V. 34. № 34. P. 8533–8554. https://doi.org/10.1016/j.biomaterials.2013.07.089
- Hickok N.J., Shapiro I.M. Immobilized antibiotics to prevent orthopaedic implant infections // Advanced drug delivery reviews. 2012. V. 64. № 12. P. 1165–1176. https://doi.org/10.1016/j.addr.2012.03.015
- Cooper L.F., Zhou Y., Takebe J. et al. Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted cp titanium endosseous implants // Biomaterials. 2006. V. 27. № 6. P. 926–936. https://doi.org/10.1016/j.biomaterials.2005.07.009
- Valverde A., Pérez-Álvarez L., Ruiz-Rubio L. et al. Antibacterial hyaluronic acid/chitosan multilayers onto smooth and micropatterned titanium surfaces //Carbohydrate polymers. 2019. V. 207. P. 824–833. https://doi.org/10.1016/j.carbpol.2018.12.039
- Lv H., Chen Z., Yang X., et al. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation //Journal of dentistry. 2014. V. 42. № 11. P. 1464–1472. https://doi.org/10.1016/j.jdent.2014.06.003
- Li K., Zhao X.K. Hammer B.K., Du S., Chen Y. Nanoparticles inhibit DNA replication by binding to DNA: Modeling and experimental validation // ACS Nano. 2013. V. 7. № 11. P. 9664–9674. https://doi.org/10.1021/nn402472k
- Gorbachevskii M.V., Stavitskaya A.V., Novikov A.A. et al. Fluorescent gold nanoclusters stabilized on halloysite nanotubes: in vitro study on cytotoxicity // Applied Clay Science. 2021. V. 207. P. 106106. https://doi.org/10.1016/j.clay.2021.106106
- Iskuzhina L., Batasheva S., Kryuchkova M. et al. Advances in the Toxicity Assessment of Silver Nanoparticles derived from a Sphagnum fallax extract for Monolayers and Spheroids // Biomolecules. 2024. V. 14. № 6. P. 611. https://doi.org/10.3390/biom14060611
- Mohammadinejad R., Moosavi M.A., Tavakol S. et al. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles //Autophagy. 2019. V. 15. № 1. P. 4–33. https://doi.org/10.1080/15548627.2018.1509171
- Pangule R.C., Brooks S.J., Dinu C.Z. et al. Antistaphylococcal nanocomposite films based on enzyme − Nanotube conjugates // ACS Nano. 2010. V. 4. № 7. P. 3993–4000. https://doi.org/10.1021/nn100932t
- Zhan Y., Yu S., Amirfazli A. et al. Recent advances in antibacterial superhydrophobic coatings // Advanced Engineering Materials. 2022. V. 24. № 4. P. 2101053. https://doi.org/10.1002/adem.202101053
- Ghilini F., Pissinis D. E., Minan A. et al. How functionalized surfaces can inhibit bacterial adhesion and viability // ACS Biomaterials Science & Engineering. 2019. V. 5. № 10. P. 4920–4936. https://doi.org/10.1021/acsbiomaterials.9b00849
- Sun X., Zhang S., Li H., Bandara N. Chapter 1 - Anti-adhesive coatings: A technique for prevention of bacterial surface fouling // Boddula R., Ahamed M.I., Asiri A.M. (ed.). Green Adhesives: Preparation, Properties and Applications. USA: Scrivener Publishing LLC. 2020. P. 1–23. https://doi.org/10.1002/9781119655053.ch1
- Desrousseaux C., Sautou V., Descamps S., Traoré O. Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation // Journal of Hospital Infection. 2013. V. 85. № 2. P. 87–93. https://doi.org/10.1016/j.jhin.2013.06.015
- Hadjesfandiari N., Yu K., Mei Y., Kizhakkedathu J.N. Polymer brush-based approaches for the development of infection-resistant surfaces // Journal of Materials Chemistry B. 2014. V. 2. № 31. P. 4968–4978. https://doi.org/10.1039/C4TB00550C
- Cloutier M., Mantovani D., Rosei F. Antibacterial coatings: Challenges, perspectives, and opportunities // Trends in Biotechnology. 2015. V. 33. № 11. P. 637–652. https://doi.org/10.1016/j.tibtech.2015.09.002
- Huang Z., Ghasemi H. Hydrophilic polymer-based anti-biofouling coatings: Preparation, mechanism, and durability //Advances in Colloid and Interface Science. 2020 V. 284. P. 102264. https://doi.org/10.1016/j.cis.2020.102264
- Boinovich L.B., Kaminsky V.V., Domantovsky A.G. et al. Bactericidal activity of superhydrophobic and superhydrophilic copper in bacterial dispersions // Langmuir. 2019. V. 35. № 7. P. 2832–2841. https://doi.org/10.1021/acs.langmuir.8b03817
- Emelyanenko A.M., Kaminskii V.V., Pytskii I.S. et al. Antibacterial properties of superhydrophilic textured copper in contact with bacterial suspensions // Bulletin of Experimental Biology and Medicine. 2020. V. 168. P. 488–491. https://doi.org/10.1007/s10517-020-04737-5
- Омран Ф.Ш., Каминский В.В., Емельяненко К.А. и др. Влияние биологической загрязненности медных поверхностей с экстремальным смачиванием на их антибактериальные свойства // Коллоидный журнал. 2023. Т. 85. №. 5. С. 641–654. https://doi.org/10.31857/S0023291223600499
- Chen S., Li L., Zhao C., Zheng J. Surface hydration: Principles and applications toward low-fouling / Nonfouling biomaterials // Polymer. 2010. V. 51. № 23. P. 5283–5293. https://doi.org/10.1016/j.polymer.2010.08.022
- Schlenoff J.B. Zwitteration: Coating surfaces with zwitterionic functionality to reduce nonspecific adsorption // Langmuir. 2014. V. 30. №. 32. P. 9625–9636. https://doi.org/10.1021/la500057j
- Estephan Z.G., Schlenoff P.S., Schlenoff J.B. Zwitteration as an alternative to PEGylation // Langmuir. 2011. V. 27. № 11. P. 6794–6800. https://doi.org/10.1021/la200227b
- Hooda A., Goyat M.S., Pandey J.K. et al. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings // Progress in Organic Coatings. 2020. V. 142. P. 105557. https://doi.org/10.1016/j.porgcoat.2020.105557
- Kang S.M., You I., Cho W.K. et al. One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating // Angewandte Chemie International Edition. 2010. V. 49. № 49. P. 9401–9404. https://doi.org/10.1002/anie.201004693
- Packham D.E. Surface energy, surface topography and adhesion // International Journal of Adhesion and Adhesives. 2003. V. 23. № 6. P. 437–448. https://doi.org/10.1016/S0143-7496(03)00068-X
- Xu L., Karunakaran R.G., Guo J., Yang S. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles // ACS Applied Materials & Interfaces. 2012. V. 4. № 2. P. 1118–1125. https://doi.org/10.1021/am201750h
- Serles P., Nikumb S., Bordatchev E. Superhydrophobic and superhydrophilic functionalized surfaces by picosecond laser texturing //Journal of Laser Applications. 2018. V. 30. № 3. P. 032505. https://doi.org/10.2351/1.5040641
- Emelyanenko A.M., Shagieva F.M., Domantovsky A.G., Boinovich L.B. Nanosecond laser micro-and nanotexturing for the design of a superhydrophobic coating robust against long-term contact with water, cavitation, and abrasion //Applied Surface Science. 2015. V. 332. P. 513–517. https://doi.org/10.1016/j.apsusc.2015.01.202
- Song B., Zhang E., Han X. et al. Engineering and application perspectives on designing an antimicrobial surface // ACS Applied Materials & Interfaces. 2020. V. 12. № 19. P. 21330–21341. https://doi.org/10.1021/acsami.9b19992
- Cheng G., Li G., Xue H. et al. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation // Biomaterials. 2009. V. 30. № 28. P. 5234–5240. https://doi.org/10.1016/j.biomaterials.2009.05.058
- Wang W., Lu Y., Zhu H., Cao Z. Superdurable coating fabricated from a double‐sided tape with long term “zero” bacterial adhesion // Advanced Materials. 2017. V. 29. № 34. P. 1606506. https://doi.org/10.1002/adma.201606506
- Feng Y., Wang Q., He M. et al. Antibiofouling zwitterionic gradational membranes with moisture retention capability and sustained antimicrobial property for chronic wound infection and skin regeneration // Biomacromolecules. 2019. V. 20. № 8. P. 3057–3069. https://doi.org/10.1021/acs.biomac.9b00629
- Liang X., Chen X., Zhu J. et al. A simple method to prepare superhydrophobic and regenerable antibacterial films // Materials Research Express. 2020. V. 7. № 5. P. 055307. https://doi.org/10.1088/2053-1591/ab903a
- Ma Y., Li J., Si Y. et al. Rechargeable antibacterial N-halamine films with antifouling function for food packaging applications // ACS Applied Materials & Interfaces. V. 11. № 19. P. 17814–17822. https://doi.org/10.1021/acsami.9b03464
- Del Olmo J.A., Pérez-Álvarez L., Martínez V.S. et al. Multifunctional antibacterial chitosan-based hydrogel coatings on Ti6Al4V biomaterial for biomedical implant applications // International Journal of Biological Macromolecules. 2023. V. 231. P. 123328. https://doi.org/10.1016/j.ijbiomac.2023.123328.
- Chug M.K., Brisbois E.J. Recent developments in multifunctional antimicrobial surfaces and applications toward advanced nitric oxide-based biomaterials // ACS Materials Au. 2022. V. 2. № 5. P. 525–551. https://doi.org/10.1021/acsmaterialsau.2c00040
- Kaminskii V.V., Aleshkin A.V., Zul’karneev E.R. et al. Development of a bacteriophage complex with superhydrophilic and superhydrophobic nanotextured surfaces of metals preventing healthcare-associated infections (HAI) // Bulletin of Experimental Biology and Medicine. 2019. V. 167. P. 500–503. https://doi.org/10.1007/s10517-019-04559-0
- Yu Q., Wu Z., Chen H. Dual-function antibacterial surfaces for biomedical applications // Acta Biomaterialia. 2015. V. 16. P. 1–13. https://doi.org/10.1016/j.actbio.2015.01.018
- Hu X., Neoh K.G., Shi Z. et al. An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion // Biomaterials. 2010. V. 31. № 34. P. 8854–8863. https://doi.org/10.1016/j.biomaterials.2010.08.006
- Zhao J., Song L., Shi Q. et al. Antibacterial and hemocompatibility switchable polypropylene nonwoven fabric membrane surface // ACS Applied Materials & Interfaces. 2013. V. 5. № 11. P. 5260–5268. https://doi.org/10.1021/am401098u
- Yuan S.J., Pehkonen S.O., Ting Y.P. et al. Antibacterial inorganic-organic hybrid coatings on stainless steel via consecutive surface-initiated atom transfer radical polymerization for biocorrosion prevention // Langmuir. 2010. V. 26. № 9. P. 6728–6736. https://doi.org/10.1021/la904083r
- Zou Y., Zhang Y., Yu Q., Chen H. Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously // Journal of Materials Science & Technology. 2021. V. 70. P. 24–38. https://doi.org/10.1016/j.jmst.2020.07.028
- Blum A.P., Kammeyer J.K., Rush A.M. et al. Stimuli-responsive nanomaterials for biomedical applications // Journal of the American Chemical Society. 2015. V. 137. № 6. P. 2140–2154. https://doi.org/10.1021/ja510147n
- Zhang J., Liu L., Wang L. et al. pH responsive zwitterionic-to-cationic transition for safe self-defensive antibacterial application // Journal of Materials Chemistry B. 2020. V. 8. № 38. P. 8908–8913. https://doi.org/10.1039/D0TB01717E
- Wei T., Yu Q., Chen H. Responsive and synergistic antibacterial coatings: Fighting against bacteria in a smart and effective way // Advanced Healthcare Materials. 2019. V. 8. № 3. P. 1801381. https://doi.org/10.1002/adhm.201801381
- Cado G., Aslam R., Séon L. et al. Self-defensive biomaterial coating against bacteria and yeasts: Polysaccharide multilayer film with embedded antimicrobial peptide // Advanced Functional Materials. 2013. V. 23. № 38. P. 4801–4809. https://doi.org/10.1002/adfm.201300416
- Ye J., Zhang X., Xie W. et al. An enzyme-responsive prodrug with inflammation‐triggered therapeutic drug release characteristics // Macromolecular Bioscience. 2020. V. 20. № 9. P. 2000116. https://doi.org/10.1002/mabi.202000116
- Fischer N.G., Chen X., Astleford-Hopper K. et al. Antimicrobial and enzyme-responsive multi-peptide surfaces for bone-anchored devices // Materials Science and Engineering: C. 2021. V. 125. P. 112108. https://doi.org/10.1016/j.msec.2021.112108
- Hizal F., Zhuk I., Sukhishvili S. et al. Impact of 3D hierarchical nanostructures on the antibacterial efficacy of a bacteria-triggered self-defensive antibiotic coating // ACS Applied Materials & Interfaces. 2015. V. 7. № 36. P. 20304–20313. https://doi.org/10.1021/acsami.5b05947
- Sutrisno L., Wang S., Li M. et al. Construction of three-dimensional net-like polyelectrolyte multilayered nanostructures onto titanium substrates for combined antibacterial and antioxidant applications // Journal of Materials Chemistry B. 2018. V. 6. № 32. P. 5290–5302. https://doi.org/10.1039/C8TB00192H
- Bu Y., Zhang L., Liu J. et al. Synthesis and properties of hemostatic and bacteria-responsive in situ hydrogels for emergency treatment in critical situations // ACS Applied Materials & Interfaces. 2016. V. 8. № 20. P. 12674–12683. https://doi.org/10.1021/acsami.6b03235
- Hu Q., Du Y., Bai Y. et al. Smart zwitterionic coatings with precise pH-responsive antibacterial functions for bone implants to combat bacterial infections //Biomaterials Science. 2024. V. 12. № 17. P. 4471–4482. https://doi.org/10.1039/D4BM00932K
- Wang T., Liu X., Zhu Y. et al. Metal ion coordination polymer-capped pH-triggered drug release system on titania nanotubes for enhancing self-antibacterial capability of Ti implants // ACS Biomaterials Science & Engineering. 2017. V. 3. № 5. P. 816–825. https://doi.org/10.1021/acsbiomaterials.7b00103
- Liu T., Yan S., Zhou R. et al. Self-adaptive antibacterial coating for universal polymeric substrates based on a micrometer-scale hierarchical polymer brush system // ACS Applied Materials & Interfaces. 2020. V. 12. № 38. P. 42576–42585. https://doi.org/10.1021/acsami.0c13413
- Zou Y., Lu K., Lin Y. et al. Dual-functional surfaces based on an antifouling polymer and a natural antibiofilm molecule: Prevention of biofilm formation without using biocides // ACS Applied Materials & Interfaces. 2021. V. 13. № 38. P. 45191–45200. https://doi.org/10.1021/acsami.1c10747
- Wei H., Song X., Liu P. et al. Antimicrobial coating strategy to prevent orthopaedic device-related infections: Recent advances and future perspectives // Biomaterials Advances. 2022. V. 135. P. 212739. https://doi.org/10.1016/j.bioadv.2022.212739
- Zhang L., Wang Y., Wang J. et al. Photon-responsive antibacterial nanoplatform for synergistic photothermal-/pharmaco-therapy of skin infection // ACS Applied Materials & Interfaces. 2018. V. 11. № 1. P. 300–310. https://doi.org/10.1021/acsami.8b18146
- Wu Q., Wei G., Xu Z. et al. Mechanistic insight into the light-irradiated carbon capsules as an antibacterial agent // ACS Applied Materials & Interfaces. 2018. V. 10. № 30. P. 25026–25036. https://doi.org/10.1021/acsami.8b04932
- Chen X., Zhou J., Qian Y., Zhao L. Antibacterial coatings on orthopedic implants // Materials Today Bio. 2023. V. 19. P. 100586. https://doi.org/10.1016/j.mtbio.2023.100586
- Wei T., Qu Y., Zou Y. et al. Exploration of smart antibacterial coatings for practical applications // Current Opinion in Chemical Engineering. 2021. V. 34. P. 100727. https://doi.org/10.1016/j.coche.2021.100727
Supplementary files
