Surface modifiers for reducing bacterial contamination in medicine and food industry

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Antibacterial coatings are used in the food and textile industries, in the construction industry, in biotechnology and medicine. The review considers the main types of coatings that prevent fouling with biomacromolecules and microorganisms: anti-adhesive, contact, release-based, multifunctional and intelligent (“smart”) coatings. For each type of coating, the most relevant and effective active substances and their mechanism of action are described. Despite the widespread use of anti-adhesive surfaces and contact coatings, they have many disadvantages that limit the scope of their application and reduce activity and durability. Numerous studies show that multifunctional and intelligent coatings have high potential for practical application and further research on their modification to obtain universal and cost-effective coatings. The main problem of the practical application of such surfaces is the imperfection of methods for assessing the stability and antibacterial properties of the coating in laboratory conditions.

Full Text

Restricted Access

About the authors

Yu. V. Cherednichenko

Казанский (Приволжский) федеральный университет

Author for correspondence.
Email: serova.yuliya87@gmail.com

Институт фундаментальной медицины и биологии

Russian Federation, 420008, РТ, Казань, ул. Кремлевская, д. 18

I. R. Ishmukhametov

Казанский (Приволжский) федеральный университет

Email: serova.yuliya87@gmail.com

Институт фундаментальной медицины и биологии

Russian Federation, 420008, РТ, Казань, ул. Кремлевская, д. 18

G. I. Fakhrullina

Казанский (Приволжский) федеральный университет

Email: serova.yuliya87@gmail.com

Институт фундаментальной медицины и биологии

Russian Federation, 420008, РТ, Казань, ул. Кремлевская, д. 18

References

  1. Jiang C.C., Cao Y.K., Xiao G.Y. et al. A review on the application of inorganic nanoparticles in chemical surface coatings on metallic substrates // RSC Advances. 2017. V. 7. № 13. P. 7531–7539. https://doi.org/10.1039/C6RA25841G
  2. Kausar A. Polymer coating technology for high performance applications: Fundamentals and advances // Journal of Macromolecular Science, Part A. 2018. V. 55. № 5. P. 440–448. https://doi.org/10.1080/10601325.2018.1453266
  3. Makvandi P., Wang C.Y., Zare E.N. et al. Metal-based nanomaterials in biomedical applications: Antimicrobial activity and cytotoxicity aspects // Advanced Functional Materials. 2020. V. 30. № 22. P. 1910021. https://doi.org/10.1002/adfm.201910021
  4. Erkoc P., Ulucan-Karnak F. Nanotechnology-based antimicrobial and antiviral surface coating strategies // Prosthesis. 2021. V. 3. № 1. P. 25–52. https://doi.org/10.3390/prosthesis3010005
  5. Wei T., Yu Q., Chen H. Responsive and synergistic antibacterial coatings: Fighting against bacteria in a smart and effective way // Advanced Healthcare Materials. 2019. V. 8. № 3. P. 18001381. https://doi.org/10.1002/adhm.201801381
  6. DeFlorio W., Liu S., White A.R. et al. Recent developments in antimicrobial and antifouling coatings to reduce or prevent contamination and cross‐contamination of food contact surfaces by bacteria // Comprehensive Reviews in Food Science and Food Safety. 2021. V. 20. № 3. P. 3093–3134. https://doi.org/10.1111/1541-4337.12750
  7. Wang L., Guo X., Zhang H. et al. Recent advances in superhydrophobic and antibacterial coatings for biomedical materials // Coatings. 2022. V. 12. № 10. P. 1469. https://doi.org/10.3390/coatings12101469
  8. Rezić I., Meštrović E. Characterization of nanoparticles in antimicrobial coatings for medical applications – A review // Coatings. 2023. V. 13. № 11. P. 1830. https://doi.org/10.3390/coatings13111830
  9. Blair J.M., Webber M.A., Baylay A.J. et al. Molecular mechanisms of antibiotic resistance // Nature reviews microbiology. 2015. V. 13. № 1. P. 42–51. https://doi.org/10.1038/nrmicro3380
  10. Давидович Н.В., Кукалевская Н.Н., Башилова Е.Н., Бажукова Т.А. Основные принципы эволюции антибиотикорезистентности у бактерий (обзор литературы) // Клиническая лабораторная диагностика. 2020. Т. 65. № 6. С. 387–393. http://dx.doi.org/10.18821/0869-2084-2020-65-6-387-393
  11. Urban-Chmiel R., Marek A., Stępień-Pyśniak D. et al. Antibiotic resistance in bacteria – A review // Antibiotics. 2022. V. 11. № 8. P. 1079. https://doi.org/10.3390/antibiotics11081079
  12. Cherednichenko Y., Batasheva S., Akhatova F. et al. Antibiofilm activity of silver nanoparticles-halloysite nanocomposite in Serratia marcescens // Journal of Nanoparticle Research. 2024. V. 26. № 4. P. 71. https://doi.org/10.1007/s11051-024-05971-y
  13. Stewart P.S., Costerton J.W. Antibiotic resistance of bacteria in biofilms // The lancet. 2001. V. 358. № 9276. P. 135–138. https://doi.org/10.1016/S0140-6736(01)05321-1
  14. Чеботарь И.В., Маянский А.Н., Кончакова Е.Д. и др. Антибиотикорезистентность биоплёночных бактерий // Клиническая микробиология и антимикробная химиотерапия. 2012. Т. 14. №. 1. С. 51–58.
  15. De Silva R.T., Pasbakhsh P., Lee S.M., Kit A.Y. ZnO deposited / Encapsulated halloysite–poly (lactic acid) (PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties // Applied Clay Science. 2015. V. 111. P. 10–20. https://doi.org/10.1016/j.clay.2015.03.024
  16. Karthikeyan P., Mitu L., Pandian K. et al. Electrochemical deposition of a Zn-HNT / P (EDOT-co-EDOP) nanocomposite on LN SS for anti-bacterial and anti-corrosive applications // New Journal of Chemistry. 2017. V. 41. № 12. P. 4758–4762. https://doi.org/10.1039/C6NJ03927H
  17. Stavitskaya A., Batasheva S., Vinokurov V. et al. Antimicrobial applications of clay nanotube-based composites // Nanomaterials. 2019. V. 9. № 5. P. 708. https://doi.org/10.3390/nano9050708
  18. Mauriello G. Chapter 11 - Control of microbial activity using antimicrobial packaging // Barros-Velazquez J. (ed). Antimicrobial Food Packaging. London, San Diego, USA: Academic Press. 2016. P. 141–152. https://doi.org/10.1016/B978-0-12-800723-5.00011-5
  19. Valencia-Chamorro S.A., Palou L., Del Río M.A., Pérez-Gago M.B. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review // Critical Reviews in Food Science and Nutrition. 2011. V. 51. № 9. P. 872–900. https://doi.org/10.1080/10408398.2010.485705
  20. Malhotra B., Keshwani A., Kharkwal H. Antimicrobial food packaging: Potential and pitfalls // Frontiers in microbiology. 2015. V. 6. P. 611. https://doi.org/10.3389/fmicb.2015.00611
  21. Fu Y., Dudley E.G. Antimicrobial-coated films as food packaging: A review // Comprehensive Reviews in Food Science and Food Safety. 2021. V. 20. № 4. P.3404−3437. https://doi.org/10.1111/1541-4337.12769
  22. Pemmada R., Shrivastava A., Dash M. et al. Science-based strategies of antibacterial coatings with bactericidal properties for biomedical and healthcare settings // Current Opinion in Biomedical Engineering. 2023. V. 25. P. 100442. https://doi.org/10.1016/j.cobme.2022.100442
  23. Paladini F., Pollini M., Sannino A., Ambrosio L. Metal-based antibacterial substrates for biomedical applications // Biomacromolecules. 2015. V. 16. № 7. P. 1873–1885. https://doi.org/10.1021/acs.biomac.5b00773
  24. Jose A., Gizdavic-Nikolaidis M., Swift S. Antimicrobial coatings: reviewing options for healthcare applications // Applied Microbiology. 2023. V. 3. № 1. P. 145–174. https://doi.org/10.3390/applmicrobiol3010012
  25. Adlhart C., Verran J., Azevedo N.F. et al. Surface modifications for antimicrobial effects in the healthcare setting: A critical overview // Journal of Hospital Infection. 2018. V. 99. № 3. P. 239–249. https://doi.org/10.1016/j.jhin.2018.01.018
  26. Simchi A., Tamjid E., Pishbin F., Boccaccini A.R. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications // Nanomedicine: Nanotechnology, Biology and Medicine. 2011. V. 7. № 1. P. 22–39. https://doi.org/10.1016/j.nano.2010.10.005
  27. Chen X., Zhou J., Qian Y., Zhao L. Antibacterial coatings on orthopedic implants // Materials Today Bio. 2023. V. 19. P. 100586. https://doi.org/10.1016/j.mtbio.2023.100586
  28. Andra S., Balu S.K., Jeevanandam J., Muthalagu M. Emerging nanomaterials for antibacterial textile fabrication // Naunyn-Schmiedeberg’s Archives of Pharmacology. 2021. V. 394. P. 1355–1382. https://doi.org/10.1007/s00210-021-02064-8
  29. Dastjerdi R., Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties // Colloids and Surfaces B: Biointerfaces. 2010. V. 79. № 1. P. 5–18. https://doi.org/10.1016/j.colsurfb.2010.03.029
  30. Aguda O.N., Lateef A. Recent advances in functionalization of nanotextiles: A strategy to combat harmful microorganisms and emerging pathogens in the 21st century // Heliyon. 2022. V. 8. №. 6. P. e09761. https://doi.org/10.1016/j.heliyon.2022.e09761
  31. Hochmannova L., Vytrasova J. Photocatalytic and antimicrobial effects of interior paints // Progress in Organic Coatings. 2010. V. 67. № 1. P. 1–5. https://doi.org/10.1016/j.porgcoat.2009.09.016
  32. Kocer H. B., Cerkez I., Worley S.D. et al. N-halamine copolymers for use in antimicrobial paints // ACS Applied Materials & Interfaces. 2011. V. 3. № 8. P. 3189–3194. https://doi.org/10.1021/am200684u
  33. Kirthika S.K., Goel G., Matthews A., Goel S. Review of the untapped potentials of antimicrobial materials in the construction sector // Progress in Materials Science. 2023. V. 133. P. 101065. https://doi.org/10.1016/j.pmatsci.2022.101065
  34. Gupta S., Puttaiahgowda Y.M., Nagaraja A., Jalageri M.D. Antimicrobial polymeric paints: An up-to-date review // Polymers for Advanced Technologies. 2021. V. 32. № 12. P. 4642–4662. https://doi.org/10.1002/pat.5485
  35. Tornero A.F., Blasco M.G., Azqueta M.C. et al. Antimicrobial ecological waterborne paint based on novel hybrid nanoparticles of zinc oxide partially coated with silver // Progress in Organic Coatings. 2018. V. 121. P. 130–141. https://doi.org/10.1016/j.porgcoat.2018.04.018
  36. Bakina O., Pikuschak E., Prokopchuk A. et al. Enhanced Biocidal Activity of Heterophase Zinc Oxide/Silver Nanoparticles Contained within Painted Surfaces // Coatings. 2024. V. 14. № 2. P. 241. https://doi.org/10.3390/coatings14020241
  37. Vasilev K., Cook J., Griesser H.J. Antibacterial surfaces for biomedical devices // Expert Review of Medical Devices. 2009. V. 6. № 5. P. 553–567. https://doi.org/10.1586/erd.09.36
  38. Cavallaro A., Taheri S., Vasilev K. Responsive and “smart” antibacterial surfaces: Common approaches and new developments // Biointerphases. 2014. V. 9. № 2. P. 029005. https://doi.org/10.1116/1.4866697
  39. Godoy-Gallardo M., Wang Z., Shen Y. et al. Antibacterial coatings on titanium surfaces: A comparison study between in vitro single-species and multispecies biofilm // ACS Applied Materials & Interfaces. 2015. V. 7. № 10. P. 5992–6001. https://doi.org/10.1021/acsami.5b00402
  40. Bharadishettar N., Bhat K.U., Bhat Panemangalore D. Coating technologies for copper based antimicrobial active surfaces: A perspective review // Metals. 2021. V. 11. № 5. P. 711. https://doi.org/10.3390/met11050711
  41. Ferreira T.P.M., Nepomuceno N.C., Medeiros E.L. et al. Antimicrobial coatings based on poly (dimethyl siloxane) and silver nanoparticles by solution blow spraying // Progress in Organic Coatings. 2019. V. 133. P. 19–26. https://doi.org/10.1016/j.porgcoat.2019.04.032
  42. Yu K., Lo J. C., Yan M. et al. Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model // Biomaterials. 2017. V. 116. P. 69–81. https://doi.org/10.1016/j.biomaterials.2016.11.047
  43. Keum H., Kim J.Y., Yu B. et al. Prevention of bacterial colonization on catheters by a one-step coating process involving an antibiofouling polymer in water // ACS Applied Materials & Interfaces. 2017. V. 9. № 23. P. 19736–19745. https://doi.org/10.1021/acsami.7b06899
  44. Li X., Li P., Saravanan R. et al. Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties // Acta Biomaterialia. 2014. V. 10. № 1. P. 258–266. https://doi.org/10.1016/j.actbio.2013.09.009
  45. Banerjee I., Pangule R.C., Kane R.S. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms // Advanced Materials. 2011. V. 23. № 6. P. 690–718. https://doi.org/10.1002/adma.201001215
  46. Raphel J., Holodniy M., Goodman S.B., Heilshorn S.C. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants // Biomaterials. 2016. V. 84. P. 301–314. https://doi.org/10.1016/j.biomaterials.2016.01.016
  47. Liao T.Y., Easton C.D., Thissen H., Tsai, W.B. Aminomalononitrile-assisted multifunctional antibacterial coatings // ACS Biomaterials Science & Engineering. 2020. V. 6. № 6. P. 3349–3360. https://doi.org/10.1021/acsbiomaterials.0c00148
  48. Li C. B., Wang F., Sun R. Y. et al. A multifunctional coating towards superhydrophobicity, flame retardancy and antibacterial performances // Chemical Engineering Journal. 2022. V. 450. P. 138031. https://doi.org/10.1016/j.cej.2022.138031
  49. Ni X., Li C., Lei Y. et al. Design of a smart self-healing coating with multiple-responsive superhydrophobicity and its application in antibiofouling and antibacterial abilities // ACS Applied Materials & Interfaces. 2021. V. 13. № 48. P. 57864–57879. https://doi.org/10.1021/acsami.1c15239
  50. Li X., Wu B., Chen H. et al. Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections // Journal of Materials Chemistry B. 2018. V. 6. № 26. P. 4274–4292. https://doi.org/10.1039/C8TB01245H
  51. Wei T., Yu Q., Zhan W., Chen H. A smart antibacterial surface for the on-demand killing and releasing of bacteria // Advanced Healthcare Materials. 2016. V. 5. № 4. P. 449–456. https://doi.org/10.1002/adhm.201500700
  52. Olmo JA-D., Ruiz-Rubio L., Pérez-Alvarez L. et al. Antibacterial coatings for improving the performance of biomaterials // Coatings. 2020. V. 10. № 2. P. 139. https://doi.org/10.3390/coatings10020139
  53. Jose A., Gizdavic-Nikolaidis M., Swift S. Antimicrobial coatings: Reviewing options for healthcare applications // Applied Microbiology. 2023. V. 3. № 1. P. 145–174. https://doi.org/10.3390/applmicrobiol3010012
  54. Yebra D.M., Kiil S., Dam-Johansen K. Antifouling technology – Past, present and future steps towards efficient and environmentally friendly antifouling coatings // Progress in Organic Coatings. 2004. V. 50. № 2. P. 75–104. https://doi.org/10.1016/j.porgcoat.2003.06.001
  55. Li L., Hong H., Cao J., Yang Y. Progress in marine antifouling coatings: Current status and prospects //Coatings. 2023. V. 13. № 11. P. 1893. https://doi.org/10.3390/coatings13111893
  56. Francis W.J. Shipbottom paints. Past, present and future research and development on anticorrosive and antifouling shipbottom compositions // Journal of the American Society for Naval Engineers. 1954. V. 66. № 4. P. 857–866. https://doi.org/10.1111/j.1559-3584.1954.tb05931.x
  57. Van Kerk G.J.M.D., Luijten J.G.A. Investigations on organo‐tin compounds. III. The biocidal properties of organo‐tin compounds //Journal of Applied Chemistry. 1954. V. 4. № 6. P. 314–319. https://doi.org/10.1002/jctb.5010040607
  58. Hazziza-Laskar J., Helary G., Sauvet G. Biocidal polymers active by contact. IV. Polyurethanes based on polysiloxanes with pendant primary alcohols and quaternary ammonium groups // Journal of Applied Polymer Science. 1995. V. 58. № 1. P. 77–84. https://doi.org/10.1002/app.1995.070580108
  59. Jansen B., Kohnen W. Prevention of biofilm formation by polymer modification // Journal of Industrial Microbiology. 1995. V. 15. № 4. P. 391–396. https://doi.org/10.1007/BF01569996
  60. Lowe A.B., Vamvakaki M., Wassall M.A. et al. Well‐defined sulfobetaine-based statistical copolymers as potential antibioadherent coatings // Journal of Biomedical Materials Research. 2000. V. 52. № 1. P. 88–94. https://doi.org/10.1002/1097-4636(200010)52:1%3C88::AID-JBM11%3E3.0.CO;2-%23
  61. Mu M., Wang X., Taylor M. et al. Multifunctional coatings for mitigating bacterial fouling and contamination // Colloid and Interface Science Communications. 2023. V. 55. P. 100717. https://doi.org/10.1016/j.colcom.2023.100717
  62. Cheng G., Xue H., Zhang Z. et al. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities // Angewandte Chemie International Edition. 2008. V. 47. № 46. P. 8831–8834. https://doi.org/10.1002/anie.200803570
  63. Yu Q., Cho J., Shivapooja P. et al. Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria // ACS Applied Materials & Interfaces. 2013. V. 5. № 19. P. 9295–9304. https://doi.org/10.1021/am4022279
  64. Qu Y., Wei T., Zhao J. et al. Regenerable smart antibacterial surfaces: Full removal of killed bacteria via a sequential degradable layer // Journal of Materials Chemistry B. 2018. V. 6. № 23. P. 3946–3955. https://doi.org/10.1039/C8TB01122B
  65. Liu Y., Zhang D., Tang Y. et al. Machine learning-enabled repurposing and design of antifouling polymer brushes //Chemical Engineering Journal. 2021. V. 420. P. 129872. https://doi.org/10.1016/j.cej.2021.129872
  66. Kaur R., Liu S. Antibacterial surface design – Contact kill // Progress in Surface Science. 2016. V. 91. № 3. P. 136–153. https://doi.org/10.1016/j.progsurf.2016.09.001
  67. Nasri N., Rusli A., Teramoto N. et al. Past and current progress in the development of antiviral / Antimicrobial polymer coating towards COVID-19 prevention: A Review // Polymers. 2021. V. 13. № 23. P. 4234. https://doi.org/10.3390/polym13234234
  68. Pan C., Zhou Z., Yu X. Coatings as the useful drug delivery system for the prevention of implant-related infections // Journal of Orthopaedic Surgery and Research. 2018. V. 13. P. 220. https://doi.org/10.1186/s13018-018-0930-y
  69. Elena P., Miri K. Formation of contact active antimicrobial surfaces by covalent grafting of quaternary ammonium compounds // Colloids and Surfaces B: Biointerfaces. 2018. V. 169. P. 195–205. https://doi.org/10.1016/j.colsurfb.2018.04.065
  70. Yu K., Alzahrani A., Khoddami S. et al. Rapid assembly of infection-resistant coatings: Screening and identification of antimicrobial peptides works in cooperation with an antifouling background // ACS Applied Materials & Interfaces. 2021. V. 13. № 31. P. 36784–36799. https://doi.org/10.1021/acsami.1c07515
  71. Alves D., Olívia Pereira M. Mini-review: Antimicrobial peptides and enzymes as promising candidates to functionalize biomaterial surfaces // Biofouling. 2014. V. 30. № 4. P. 483–499. https://doi.org/10.1080/08927014.2014.889120
  72. Qu B., Luo Y. A review on the preparation and characterization of chitosan-clay nanocomposite films and coatings for food packaging applications // Carbohydrate Polymer Technologies and Applications. 2021. V. 2. P. 100102. https://doi.org/10.1016/j.carpta.2021.100102
  73. Li W., Thian E.S., Wang M. et al. Surface design for antibacterial materials: From fundamentals to advanced strategies // Advanced Science. 2021. V. 8. № 19. P. 2100368. https://doi.org/10.1002/advs.202100368
  74. Shahid A., Aslam B., Muzammil S., et al. The prospects of antimicrobial coated medical implants // Journal of Applied Biomaterials & Functional Materials. 2021. V. 19. P. 22808000211040304. https://doi.org/10.1177/22808000211040304
  75. Campoccia D., Montanaro L., Arciola C.R. A review of the biomaterials technologies for infection-resistant surfaces // Biomaterials. 2013. V. 34. № 34. P. 8533–8554. https://doi.org/10.1016/j.biomaterials.2013.07.089
  76. Zilberman M., Elsner J.J. Antibiotic-eluting medical devices for various applications // Journal of Controlled Release. 2008. V. 130. № 3. P. 202–215. https://doi.org/10.1016/j.jconrel.2008.05.020
  77. Batoni G., Maisetta G., Esin S. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria // Biochimica et Biophysica Acta (BBA) - Biomembranes. 2016. V. 1858. № 5. P. 1044–1060. https://doi.org/10.1016/j.bbamem.2015.10.013
  78. Chen R., Shi C., Xi Y. et al. Fabrication of cationic polymer surface through plasma polymerization and layer-by-layer assembly // Materials and Manufacturing Processes. 2020. V. 35. № 2. P. 221–229. https://doi.org/10.1080/10426914.2019.1675892
  79. Li J., Zhuang S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives // European Polymer Journal. 2020. V. 138. P. 109984. https://doi.org/10.1016/j.eurpolymj.2020.109984
  80. Wrońska N., Katir N., Miłowska K. et al. Antimicrobial effect of chitosan films on food spoilage bacteria // International Journal of Molecular Sciences. 2021. V. 22. № 11. P. 5839. https://doi.org/10.3390/ijms22115839
  81. Thallinger B., Prasetyo E.N., Nyanhongo G.S., Guebitz G.M. Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms // Biotechnology Journal. 2013. V. 8. № 1. P. 97–109. https://doi.org/10.1002/biot.201200313
  82. Campoccia D., Montanaro L., Arciola C.R. A review of the biomaterials technologies for infection-resistant surfaces //Biomaterials. 2013. V. 34. № 34. P. 8533–8554. https://doi.org/10.1016/j.biomaterials.2013.07.089
  83. Hickok N.J., Shapiro I.M. Immobilized antibiotics to prevent orthopaedic implant infections // Advanced drug delivery reviews. 2012. V. 64. № 12. P. 1165–1176. https://doi.org/10.1016/j.addr.2012.03.015
  84. Cooper L.F., Zhou Y., Takebe J. et al. Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted cp titanium endosseous implants // Biomaterials. 2006. V. 27. № 6. P. 926–936. https://doi.org/10.1016/j.biomaterials.2005.07.009
  85. Valverde A., Pérez-Álvarez L., Ruiz-Rubio L. et al. Antibacterial hyaluronic acid/chitosan multilayers onto smooth and micropatterned titanium surfaces //Carbohydrate polymers. 2019. V. 207. P. 824–833. https://doi.org/10.1016/j.carbpol.2018.12.039
  86. Lv H., Chen Z., Yang X., et al. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation //Journal of dentistry. 2014. V. 42. № 11. P. 1464–1472. https://doi.org/10.1016/j.jdent.2014.06.003
  87. Li K., Zhao X.K. Hammer B.K., Du S., Chen Y. Nanoparticles inhibit DNA replication by binding to DNA: Modeling and experimental validation // ACS Nano. 2013. V. 7. № 11. P. 9664–9674. https://doi.org/10.1021/nn402472k
  88. Gorbachevskii M.V., Stavitskaya A.V., Novikov A.A. et al. Fluorescent gold nanoclusters stabilized on halloysite nanotubes: in vitro study on cytotoxicity // Applied Clay Science. 2021. V. 207. P. 106106. https://doi.org/10.1016/j.clay.2021.106106
  89. Iskuzhina L., Batasheva S., Kryuchkova M. et al. Advances in the Toxicity Assessment of Silver Nanoparticles derived from a Sphagnum fallax extract for Monolayers and Spheroids // Biomolecules. 2024. V. 14. № 6. P. 611. https://doi.org/10.3390/biom14060611
  90. Mohammadinejad R., Moosavi M.A., Tavakol S. et al. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles //Autophagy. 2019. V. 15. № 1. P. 4–33. https://doi.org/10.1080/15548627.2018.1509171
  91. Pangule R.C., Brooks S.J., Dinu C.Z. et al. Antistaphylococcal nanocomposite films based on enzyme − Nanotube conjugates // ACS Nano. 2010. V. 4. № 7. P. 3993–4000. https://doi.org/10.1021/nn100932t
  92. Zhan Y., Yu S., Amirfazli A. et al. Recent advances in antibacterial superhydrophobic coatings // Advanced Engineering Materials. 2022. V. 24. № 4. P. 2101053. https://doi.org/10.1002/adem.202101053
  93. Ghilini F., Pissinis D. E., Minan A. et al. How functionalized surfaces can inhibit bacterial adhesion and viability // ACS Biomaterials Science & Engineering. 2019. V. 5. № 10. P. 4920–4936. https://doi.org/10.1021/acsbiomaterials.9b00849
  94. Sun X., Zhang S., Li H., Bandara N. Chapter 1 - Anti-adhesive coatings: A technique for prevention of bacterial surface fouling // Boddula R., Ahamed M.I., Asiri A.M. (ed.). Green Adhesives: Preparation, Properties and Applications. USA: Scrivener Publishing LLC. 2020. P. 1–23. https://doi.org/10.1002/9781119655053.ch1
  95. Desrousseaux C., Sautou V., Descamps S., Traoré O. Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation // Journal of Hospital Infection. 2013. V. 85. № 2. P. 87–93. https://doi.org/10.1016/j.jhin.2013.06.015
  96. Hadjesfandiari N., Yu K., Mei Y., Kizhakkedathu J.N. Polymer brush-based approaches for the development of infection-resistant surfaces // Journal of Materials Chemistry B. 2014. V. 2. № 31. P. 4968–4978. https://doi.org/10.1039/C4TB00550C
  97. Cloutier M., Mantovani D., Rosei F. Antibacterial coatings: Challenges, perspectives, and opportunities // Trends in Biotechnology. 2015. V. 33. № 11. P. 637–652. https://doi.org/10.1016/j.tibtech.2015.09.002
  98. Huang Z., Ghasemi H. Hydrophilic polymer-based anti-biofouling coatings: Preparation, mechanism, and durability //Advances in Colloid and Interface Science. 2020 V. 284. P. 102264. https://doi.org/10.1016/j.cis.2020.102264
  99. Boinovich L.B., Kaminsky V.V., Domantovsky A.G. et al. Bactericidal activity of superhydrophobic and superhydrophilic copper in bacterial dispersions // Langmuir. 2019. V. 35. № 7. P. 2832–2841. https://doi.org/10.1021/acs.langmuir.8b03817
  100. Emelyanenko A.M., Kaminskii V.V., Pytskii I.S. et al. Antibacterial properties of superhydrophilic textured copper in contact with bacterial suspensions // Bulletin of Experimental Biology and Medicine. 2020. V. 168. P. 488–491. https://doi.org/10.1007/s10517-020-04737-5
  101. Омран Ф.Ш., Каминский В.В., Емельяненко К.А. и др. Влияние биологической загрязненности медных поверхностей с экстремальным смачиванием на их антибактериальные свойства // Коллоидный журнал. 2023. Т. 85. №. 5. С. 641–654. https://doi.org/10.31857/S0023291223600499
  102. Chen S., Li L., Zhao C., Zheng J. Surface hydration: Principles and applications toward low-fouling / Nonfouling biomaterials // Polymer. 2010. V. 51. № 23. P. 5283–5293. https://doi.org/10.1016/j.polymer.2010.08.022
  103. Schlenoff J.B. Zwitteration: Coating surfaces with zwitterionic functionality to reduce nonspecific adsorption // Langmuir. 2014. V. 30. №. 32. P. 9625–9636. https://doi.org/10.1021/la500057j
  104. Estephan Z.G., Schlenoff P.S., Schlenoff J.B. Zwitteration as an alternative to PEGylation // Langmuir. 2011. V. 27. № 11. P. 6794–6800. https://doi.org/10.1021/la200227b
  105. Hooda A., Goyat M.S., Pandey J.K. et al. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings // Progress in Organic Coatings. 2020. V. 142. P. 105557. https://doi.org/10.1016/j.porgcoat.2020.105557
  106. Kang S.M., You I., Cho W.K. et al. One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating // Angewandte Chemie International Edition. 2010. V. 49. № 49. P. 9401–9404. https://doi.org/10.1002/anie.201004693
  107. Packham D.E. Surface energy, surface topography and adhesion // International Journal of Adhesion and Adhesives. 2003. V. 23. № 6. P. 437–448. https://doi.org/10.1016/S0143-7496(03)00068-X
  108. Xu L., Karunakaran R.G., Guo J., Yang S. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles // ACS Applied Materials & Interfaces. 2012. V. 4. № 2. P. 1118–1125. https://doi.org/10.1021/am201750h
  109. Serles P., Nikumb S., Bordatchev E. Superhydrophobic and superhydrophilic functionalized surfaces by picosecond laser texturing //Journal of Laser Applications. 2018. V. 30. № 3. P. 032505. https://doi.org/10.2351/1.5040641
  110. Emelyanenko A.M., Shagieva F.M., Domantovsky A.G., Boinovich L.B. Nanosecond laser micro-and nanotexturing for the design of a superhydrophobic coating robust against long-term contact with water, cavitation, and abrasion //Applied Surface Science. 2015. V. 332. P. 513–517. https://doi.org/10.1016/j.apsusc.2015.01.202
  111. Song B., Zhang E., Han X. et al. Engineering and application perspectives on designing an antimicrobial surface // ACS Applied Materials & Interfaces. 2020. V. 12. № 19. P. 21330–21341. https://doi.org/10.1021/acsami.9b19992
  112. Cheng G., Li G., Xue H. et al. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation // Biomaterials. 2009. V. 30. № 28. P. 5234–5240. https://doi.org/10.1016/j.biomaterials.2009.05.058
  113. Wang W., Lu Y., Zhu H., Cao Z. Superdurable coating fabricated from a double‐sided tape with long term “zero” bacterial adhesion // Advanced Materials. 2017. V. 29. № 34. P. 1606506. https://doi.org/10.1002/adma.201606506
  114. Feng Y., Wang Q., He M. et al. Antibiofouling zwitterionic gradational membranes with moisture retention capability and sustained antimicrobial property for chronic wound infection and skin regeneration // Biomacromolecules. 2019. V. 20. № 8. P. 3057–3069. https://doi.org/10.1021/acs.biomac.9b00629
  115. Liang X., Chen X., Zhu J. et al. A simple method to prepare superhydrophobic and regenerable antibacterial films // Materials Research Express. 2020. V. 7. № 5. P. 055307. https://doi.org/10.1088/2053-1591/ab903a
  116. Ma Y., Li J., Si Y. et al. Rechargeable antibacterial N-halamine films with antifouling function for food packaging applications // ACS Applied Materials & Interfaces. V. 11. № 19. P. 17814–17822. https://doi.org/10.1021/acsami.9b03464
  117. Del Olmo J.A., Pérez-Álvarez L., Martínez V.S. et al. Multifunctional antibacterial chitosan-based hydrogel coatings on Ti6Al4V biomaterial for biomedical implant applications // International Journal of Biological Macromolecules. 2023. V. 231. P. 123328. https://doi.org/10.1016/j.ijbiomac.2023.123328.
  118. Chug M.K., Brisbois E.J. Recent developments in multifunctional antimicrobial surfaces and applications toward advanced nitric oxide-based biomaterials // ACS Materials Au. 2022. V. 2. № 5. P. 525–551. https://doi.org/10.1021/acsmaterialsau.2c00040
  119. Kaminskii V.V., Aleshkin A.V., Zul’karneev E.R. et al. Development of a bacteriophage complex with superhydrophilic and superhydrophobic nanotextured surfaces of metals preventing healthcare-associated infections (HAI) // Bulletin of Experimental Biology and Medicine. 2019. V. 167. P. 500–503. https://doi.org/10.1007/s10517-019-04559-0
  120. Yu Q., Wu Z., Chen H. Dual-function antibacterial surfaces for biomedical applications // Acta Biomaterialia. 2015. V. 16. P. 1–13. https://doi.org/10.1016/j.actbio.2015.01.018
  121. Hu X., Neoh K.G., Shi Z. et al. An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion // Biomaterials. 2010. V. 31. № 34. P. 8854–8863. https://doi.org/10.1016/j.biomaterials.2010.08.006
  122. Zhao J., Song L., Shi Q. et al. Antibacterial and hemocompatibility switchable polypropylene nonwoven fabric membrane surface // ACS Applied Materials & Interfaces. 2013. V. 5. № 11. P. 5260–5268. https://doi.org/10.1021/am401098u
  123. Yuan S.J., Pehkonen S.O., Ting Y.P. et al. Antibacterial inorganic-organic hybrid coatings on stainless steel via consecutive surface-initiated atom transfer radical polymerization for biocorrosion prevention // Langmuir. 2010. V. 26. № 9. P. 6728–6736. https://doi.org/10.1021/la904083r
  124. Zou Y., Zhang Y., Yu Q., Chen H. Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously // Journal of Materials Science & Technology. 2021. V. 70. P. 24–38. https://doi.org/10.1016/j.jmst.2020.07.028
  125. Blum A.P., Kammeyer J.K., Rush A.M. et al. Stimuli-responsive nanomaterials for biomedical applications // Journal of the American Chemical Society. 2015. V. 137. № 6. P. 2140–2154. https://doi.org/10.1021/ja510147n
  126. Zhang J., Liu L., Wang L. et al. pH responsive zwitterionic-to-cationic transition for safe self-defensive antibacterial application // Journal of Materials Chemistry B. 2020. V. 8. № 38. P. 8908–8913. https://doi.org/10.1039/D0TB01717E
  127. Wei T., Yu Q., Chen H. Responsive and synergistic antibacterial coatings: Fighting against bacteria in a smart and effective way // Advanced Healthcare Materials. 2019. V. 8. № 3. P. 1801381. https://doi.org/10.1002/adhm.201801381
  128. Cado G., Aslam R., Séon L. et al. Self-defensive biomaterial coating against bacteria and yeasts: Polysaccharide multilayer film with embedded antimicrobial peptide // Advanced Functional Materials. 2013. V. 23. № 38. P. 4801–4809. https://doi.org/10.1002/adfm.201300416
  129. Ye J., Zhang X., Xie W. et al. An enzyme-responsive prodrug with inflammation‐triggered therapeutic drug release characteristics // Macromolecular Bioscience. 2020. V. 20. № 9. P. 2000116. https://doi.org/10.1002/mabi.202000116
  130. Fischer N.G., Chen X., Astleford-Hopper K. et al. Antimicrobial and enzyme-responsive multi-peptide surfaces for bone-anchored devices // Materials Science and Engineering: C. 2021. V. 125. P. 112108. https://doi.org/10.1016/j.msec.2021.112108
  131. Hizal F., Zhuk I., Sukhishvili S. et al. Impact of 3D hierarchical nanostructures on the antibacterial efficacy of a bacteria-triggered self-defensive antibiotic coating // ACS Applied Materials & Interfaces. 2015. V. 7. № 36. P. 20304–20313. https://doi.org/10.1021/acsami.5b05947
  132. Sutrisno L., Wang S., Li M. et al. Construction of three-dimensional net-like polyelectrolyte multilayered nanostructures onto titanium substrates for combined antibacterial and antioxidant applications // Journal of Materials Chemistry B. 2018. V. 6. № 32. P. 5290–5302. https://doi.org/10.1039/C8TB00192H
  133. Bu Y., Zhang L., Liu J. et al. Synthesis and properties of hemostatic and bacteria-responsive in situ hydrogels for emergency treatment in critical situations // ACS Applied Materials & Interfaces. 2016. V. 8. № 20. P. 12674–12683. https://doi.org/10.1021/acsami.6b03235
  134. Hu Q., Du Y., Bai Y. et al. Smart zwitterionic coatings with precise pH-responsive antibacterial functions for bone implants to combat bacterial infections //Biomaterials Science. 2024. V. 12. № 17. P. 4471–4482. https://doi.org/10.1039/D4BM00932K
  135. Wang T., Liu X., Zhu Y. et al. Metal ion coordination polymer-capped pH-triggered drug release system on titania nanotubes for enhancing self-antibacterial capability of Ti implants // ACS Biomaterials Science & Engineering. 2017. V. 3. № 5. P. 816–825. https://doi.org/10.1021/acsbiomaterials.7b00103
  136. Liu T., Yan S., Zhou R. et al. Self-adaptive antibacterial coating for universal polymeric substrates based on a micrometer-scale hierarchical polymer brush system // ACS Applied Materials & Interfaces. 2020. V. 12. № 38. P. 42576–42585. https://doi.org/10.1021/acsami.0c13413
  137. Zou Y., Lu K., Lin Y. et al. Dual-functional surfaces based on an antifouling polymer and a natural antibiofilm molecule: Prevention of biofilm formation without using biocides // ACS Applied Materials & Interfaces. 2021. V. 13. № 38. P. 45191–45200. https://doi.org/10.1021/acsami.1c10747
  138. Wei H., Song X., Liu P. et al. Antimicrobial coating strategy to prevent orthopaedic device-related infections: Recent advances and future perspectives // Biomaterials Advances. 2022. V. 135. P. 212739. https://doi.org/10.1016/j.bioadv.2022.212739
  139. Zhang L., Wang Y., Wang J. et al. Photon-responsive antibacterial nanoplatform for synergistic photothermal-/pharmaco-therapy of skin infection // ACS Applied Materials & Interfaces. 2018. V. 11. № 1. P. 300–310. https://doi.org/10.1021/acsami.8b18146
  140. Wu Q., Wei G., Xu Z. et al. Mechanistic insight into the light-irradiated carbon capsules as an antibacterial agent // ACS Applied Materials & Interfaces. 2018. V. 10. № 30. P. 25026–25036. https://doi.org/10.1021/acsami.8b04932
  141. Chen X., Zhou J., Qian Y., Zhao L. Antibacterial coatings on orthopedic implants // Materials Today Bio. 2023. V. 19. P. 100586. https://doi.org/10.1016/j.mtbio.2023.100586
  142. Wei T., Qu Y., Zou Y. et al. Exploration of smart antibacterial coatings for practical applications // Current Opinion in Chemical Engineering. 2021. V. 34. P. 100727. https://doi.org/10.1016/j.coche.2021.100727

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Classification of the main types of antibacterial coatings.

Download (260KB)
3. Fig. 2. a - Schematic representation of the mechanism of action of contact-type antibacterial coatings; b - Schematic representation of the mechanism of action of release-based antibacterial coatings; c - images of viable cells (green) and dead bacteria (red) of S. sanguinis, L. salivarius and dental plaque obtained by confocal microscopy with 20x objective magnification after 4 weeks of incubation at 37°C: 1 - on titanium surface, 2 - on titanium surface with silver electrodeposition, 3 - on titanium surface coated with silane triethoxysilylpropylantharic anhydride with immobilized hLf1-11 peptide. Reproduced from [39], with permission from the American Chemical Society, 2015.

Download (991KB)
4. Fig. 3. a - electron micrograph of a 7-day S. aureus biofilm on an uncoated surface; b - electron micrograph of a polydodecyl methacrylate-polyethylene glycol methacrylate-acrylic acid coating that inhibits biofilm formation from S. aureus for 7 days.Reproduced from [43], with permission from the American Chemical Society, 2017; c, schematic representations of the anti-adhesion coatings. (1) - hydrophilic polymers, (2) - zwitterionic coatings, (3) - superhydrophobic coatings, water contact angle greater than 150°, like lotus leaf.Reproduced from [93], with permission of 2020 John Wiley & Sons, Inc.; d - schematic representation of the mechanism of action of the anti-adhesion coating.

Download (533KB)
5. Fig. 4. a - schematic representation of the mechanism of action of multifunctional antibacterial coating; b - antibacterial activity of uncoated and coated cotton fabrics containing polyethylenimine, phytic acid, iron ion (Fe3+) and dimethyloctadecyl [3-trimethoxysilyl propyl] ammonium chloride against E. coli and St. aureus, respectively; c - optical images of water droplets placed on uncoated and coated cotton fabrics, respectively.coli and St. aureus, respectively; c, optical images of water droplets placed on uncoated and multifunctional coated cotton fabrics, respectively.Reproduced from [48], with permission from Elsevier B.V., 2022.

Download (203KB)
6. Fig. 5. a - schematic representation of the mechanism of action of smart antibacterial coating; b - electron micrographs of E. coli and S. aureus cultured with carbon capsules modified with polyethylene glycol and doped with nitrogen with and without 808 nm laser irradiation. Reproduced from [138], with permission from the American Chemical Society, 2018; c, confocal microscopy images of viable cells (green) and dead bacteria (red) of S. aureus obtained with 3D nanoporous surface uncoated, 3D nanoporous surface coated with tannic acid, 3D nanoporous surface coated with tannic acid and gentamicin, respectively. Reproduced from [129], with permission from the American Chemical Society, 2015.

Download (953KB)

Copyright (c) 2025 Russian Academy of Sciences