Fabrication of Hydrophilic Organosilicon Coatings and Study of Their Resistance to Factors Accompanying Corona Discharge

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Modern power industry widely uses high-voltage overhead lines to transport electricity, which are characterized by problems of corona discharge and leakage currents, especially in rain and snow conditions. One approach to solve these problems is to create protective coatings that can reduce corona in adverse weather conditions. This paper presents a study of a hydrophilic organosilicon coating based on aminopropyltriethoxysilane and PEG-400 for aluminum wires. Studies conducted to assess the resistance of the coating to prolonged contact with water, UV radiation and an ozone-saturated atmosphere have shown that the hydrophilicity of the coating increases under effect of these factors, which improves its anti-corona properties. Thus, durability under operating conditions open prospects for use of the developed coating in the energy sector.

Full Text

Restricted Access

About the authors

К. А. Emelyanenko

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Author for correspondence.
Email: emelyanenko.kirill@mail.ru
Russian Federation, Москва

О. А. Ryabkova

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Email: emelyanenko.kirill@mail.ru
Russian Federation, Москва

N. Denman

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Email: emelyanenko.kirill@mail.ru
Russian Federation, Москва

References

  1. Бакай E.O. Экономико-статистический анализ потерь при передаче электроэнергии по высоковольтным проводам в России // Вестник ЮУрГУ. Серия “Экономика и менеджмент”. 2017. Т. 11. № 4. С. 117–125. https://doi.org/10.14529/em170416
  2. Sollerkvist F.J., Maxwell A., Rouden K., Ohnstad T.M. Evaluation, verification and operational supervision of corona losses in Sweden // IEEE Transactions on Power Delivery. 2007. V. 22. № 2. P.1210–1217. https://doi.org/10.1109/TPWRD.2006.881598
  3. Boinovich L.B., Emel’yanenko A.M., Pashinin A.S. Interactions of silicone rubbers designed for electrical engineering applications with aqueous media // Protection of Metals and Physical Chemistry of Surfaces. 2009. V. 45. № 1. P. 89–94. https://doi.org/10.1134/ S2070205109010146
  4. Chen L., Bian X., Wang L., Guan Z. Effect of rain drops on corona discharge in alternating current transmission lines with a corona cage // Japanese Journal of Applied Physics. 2012. V. 51. № 9. P. 09MG02. https://doi.org/10.1143/JJAP.51.09MG02
  5. Yin F., Farzaneh M., Jiang X. Electrical characteristics of an energized conductor under various weather conditions // High Voltage. 2017. V. 2. № 2. P. 102–109. https://doi.org/10.1049/hve.2016.0094
  6. Yin F., Farzaneh M., Jiang X. Laboratory investigation of AC corona loss and corona onset voltage on a conductor under icing conditions // IEEE Transactions on Dielectrics and Electrical Insulation. 2016. V. 23, № 3. P. 1862–1871. https://doi.org/ 10.1109/TDEI.2016.005626
  7. Мороз А.С., Ковалева В.Д., Морозов А.Г. Способ снижения потерь электроэнергии в ЛЭП 500 кВ и выше с учетом влияния погодных условий на коронный разряд // Актуальные проблемы энергетики. СНТК-74. 2018. P. 369–370.
  8. Emelyanenko K.A., Emelyanenko A.M., Boinovich L.B. Laser nanoengineered coatings for efficient energy transportation through corona discharge suppression // Optics & Laser Technology. 2024. V. 171. P. 110394. https://doi.org/10.1016/j.optlastec.2023.110394
  9. Emelyanenko K.A., Domantovsky A.G., Platonov P.S., Kochenkov P.S., Emelyanenko A.M., Boinovich L.B. The durability of superhydrophobic and slippery liquid infused porous surface coatings under corona discharge characteristic of the operation of high voltage power transmission lines // Energy Reports. 2022. V. 8. № 9. P. 6837–6844. https://doi.org/10.1016/j.egyr.2022.05.035
  10. Bousiou E.I., Mikropoulos P.N., Zagkanas V.N. Corona inception field of typical overhead line conductors under variable atmospheric conditions // Electric Power Systems Research. 2020. V. 178. P. 106032. https://doi.org/10.1016/j.epsr.2019.106032.
  11. Amin M., Akbar M., Amin S. Hydrophobicity of silicone rubber used for outdoor insulation (an overview) // Reviews on Advanced Materials Science. 2007. V. 16. P. 10–26.
  12. Xu P., Hedtke S., Zhang B., Pfeiffer M., Franck C.M., He J. HVAC corona current characteristics and audible noise during rain // IEEE Transactions on Power Delivery. 2020. V. 36, № 1. P. 331–338. http://dx.doi.org/10.1109/TPWRD.2020.2975803
  13. Schultz T., Pfeiffer M., Franck C.M. Optical investigation methods for determining the impact of rain drops on HVDC corona // Journal of Electrostatics. V. 77. P. 13–20. http://dx.doi.org/10.1016/j.elstat.2015.06.007
  14. Zhang X., Plaengpraphan C., Lian C., Li W., Han Q., Rowland S.M., Cotton I., Li Q. Degradation of superhydrophobic aluminium overhead line conductor surfaces // High Voltage. 2024. P. hve2.12455, https://doi.org/10.1049/hve2.12455.
  15. Lian C., Emersic C., Rajab F.H., Cotton I., Zhang X., Lowndes R., Li L. Assessing the superhydrophobic performance of laser micropatterned aluminium overhead line conductor material // IEEE Transactions on Power Delivery. 2021. P. 1–1. https://doi.org/10.1109/TPWRD.2021.3074946.
  16. Lian C., Zhang X., Emersic C., Lowndes R., Cotton I. Long-term durability of stearic acid silicon dioxide nanoparticle superhydrophobic coating on aluminium alloy overhead line conductors // 2019 IEEE Electrical Insulation Conference (EIC) 2019 IEEE Electrical Insulation Conference (EIC). – Calgary, AB, Canada: IEEE. 2019. P. 238–241.
  17. Domantovsky A.G., Emelyanenko K.A., Emelyanenko A.M., Boinovich L.B. The influence of prolonged high concentration ozone exposure on superhydrophobic coatings in static and high-speed flow atmosphere // Materials. 2022. V. 15. № 16. P. 5725. https://doi.org/10.3390/ma15165725
  18. Montes Ruiz-Cabello F.J., Ibañez-Ibañez P., Paz-Gomez G., Cabrerizo-Vilchez M., Rodriguez-Valverde M.A. Fabrication of superhydrophobic metal surfaces for anti-icing applications // Journal of Visualized Experiments. 2018. № 138. P. 57635. https://doi.org/10.3791/57635.
  19. Boinovich L.B., Emelyanenko K.A., Domantovsky A.G., Emelyanenko A.M. Laser tailoring the surface chemistry and morphology for wear, scale and corrosion resistant superhydrophobic coatings // Langmuir. 2018. V. 34. P. 7059−7066. https://doi.org/10.1021/acs.langmuir.8b01317
  20. Domantovsky A.G., Chulkova E.V., Emelyanenko K.A., Maslakov K.I., Emelyanenko A.M., Boinovich L.B. Evolution of superhydrophilic aluminum alloy properties in contact with water during cyclic variation in temperature // Materials. 2022. V. 15. № 7. P. 2447. https://doi.org/10.3390/ma15072447
  21. Emelyanenko A.M., Boinovich L.B. Application of dynamic thresholding of video images for measuring the interfacial tension of liquids and contact angles // Instruments and Experimental Techniques. 2002. V. 25. № 1. P. 44–49. https://doi.org/10.1023/A:1014544124713
  22. Ramanauskaite L., Snitka V. The synthesis of controlled shape nanoplasmonic silver-silica structures by combining sol-gel technique and direct silver reduction // Nanoscale Research Letters. 2015. V. 10. № 1. P. 133. https://doi.org/10.1186/s11671-015-0839-x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Photographs of the experimental setup for investigating the evolution of the wetting angle

Download (131KB)
3. Fig. 2. Evolution of wetting angle (red squares, right axis), surface tension (blue circles, first left axis) and bubble volume (green triangles, second left axis) from the time of continuous surface contact with the submerged bubble under water

Download (137KB)
4. Fig. 3. Changes in the wetting angle of coatings during ozone exposure. Blue squares indicate wetting angles directly after exposure, red circles after additional exposure in air atmosphere for 14 hours

Download (79KB)
5. Fig. 4. Changes in the wetting angle of coatings during exposure to UV light at an intensity of 10 W/cm2

Download (62KB)

Copyright (c) 2024 Russian Academy of Sciences