Obtaining carbon nanotubes dispersions in solutions of ethoxylated fatty alcohols for modifying gel systems
- 作者: Gataullin A.R.1, Abramov V.A.1, Bogdanova S.A.1, Salnikov V.V.2, Zuev Y.F.2, Galyametdinov Y.G.1
-
隶属关系:
- Казанский национальный исследовательский технологический университет
- Казанский институт биохимии и биофизики ФИЦ КазНЦ РАН
- 期: 卷 86, 编号 4 (2024)
- 页面: 422-435
- 栏目: Articles
- ##submission.dateSubmitted##: 27.02.2025
- ##submission.datePublished##: 21.10.2024
- URL: https://ter-arkhiv.ru/0023-2912/article/view/670859
- DOI: https://doi.org/10.31857/S0023291224040022
- EDN: https://elibrary.ru/carvxu
- ID: 670859
如何引用文章
详细
A systematic study of the effect of nonionic surfactants – ethoxylated higher fatty alcohols with a variable degree of ethoxylation on the process of ultrasonic dispersion of carbon nanotubes in aqueous solutions and on the colloidal-chemical properties of the resulting dispersions during long-term storage – optical density, size and electrokinetic potential of the particles of colloidal systems was carried out. A non-linear dependence of the characteristics of dispersions on the ethoxylation degree associated with structural changes in the molecules of nonionic surfactants was revealed. The most effective ethoxylation degree and the concentration of nonionic surfactants in solution, which have the highest disaggregating and stabilizing effects in the preparation of carbon nanotube (CNT) dispersions, have been determined. The effect ethoxylation degree of ethoxylated higher fatty alcohols on the electrokinetic properties of CNT dispersions has been revealed. The possibility of using carbon nanotube dispersions for modifying the rheological and electrical properties of gel systems based on lightly crosslinked polyacrylic acid is shown. The effect of nonionic surfactants and CNTs on viscosity, shear yield point, consistency index, mechanical stability, relaxation time, and viscous flow activation energy of polymer gels has been studied. It is shown that the introduction of nanotubes leads to an increase in the electrical conductivity of the gels. The ultrastructure of gel samples was studied by transmission electron microscopy.
全文:

作者简介
A. Gataullin
Казанский национальный исследовательский технологический университет
编辑信件的主要联系方式.
Email: zulfat.azari@yandex.ru
俄罗斯联邦, ул. Карла Маркса, 68, Казань, 420015
V. Abramov
Казанский национальный исследовательский технологический университет
Email: zulfat.azari@yandex.ru
俄罗斯联邦, ул. Карла Маркса, 68, Казань, 420015
S. Bogdanova
Казанский национальный исследовательский технологический университет
Email: zulfat.azari@yandex.ru
俄罗斯联邦, ул. Карла Маркса, 68, Казань, 420015
V. Salnikov
Казанский институт биохимии и биофизики ФИЦ КазНЦ РАН
Email: zulfat.azari@yandex.ru
俄罗斯联邦, ул. Лобачевского, 2/31, Казань, 420111
Yu. Zuev
Казанский институт биохимии и биофизики ФИЦ КазНЦ РАН
Email: zulfat.azari@yandex.ru
俄罗斯联邦, ул. Лобачевского, 2/31, Казань, 420111
Yu. Galyametdinov
Казанский национальный исследовательский технологический университет
Email: zulfat.azari@yandex.ru
俄罗斯联邦, ул. Карла Маркса, 68, Казань, 420015
参考
- Kuo T.-R., Hovhannisyan V.A., Chao Y.-C., Chao S.-L., Chiang S.-J., Lin S.-J., Dong C.-Y., Chen C.-C. Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation // Journal of the American Chemical Society. 2010. V. 132. № 40. P. 14163–14171. https://doi.org/10.1021/ja105360z
- Hosoyama K., Ahumada M., McTiernan C.D., Davis D.R., Variola F., Ruel M., Liang W., Suuronen E.J., Alarcon E.I. Nanoengineered electroconductive collagen-based cardiac patch for infarcted myocardium repair // ACS Appl. Mater. Interfaces. 2018. V. 10. № 51. P. 44668–44677. https://doi.org/10.1021/acsami.8b18844
- Cai J., Zhang X., Liu W., Huang J., Qiu X. Synthesis of highly conductive hydrogel with high strength and super toughness // Polymer. 2020. V. 202. P. 122643. https://doi.org/10.1016/j.polymer.2020.122643
- Zare E.N., Abdollahi T., Motahari A. Effect of functionalization of iron oxide nanoparticles on the physical properties of poly (aniline-co-pyrrole) based nanocomposites: Experimental and theoretical studies // Arabian Journal of Chemistry. 2020. V. 13. № 1. P. 2331–2339. https://doi.org/10.1016/j.arabjc.2018.04.016
- Ичкитидзе Л.П., Подгаецкий В.М. Электропроводный биосовместимый композиционный наноматериал с углеродными нанотрубками // Медицинская техника. 2011. № 6. С. 25–28.
- Dusenberg B., Tischer F., Seidel A. M., Kopp S. P., Schmidt J., Roth S., Buck A. Production and analysis of electrically conductive polymer–carbon-black composites for powder based additive manufacturing // Procedia CIRP. 2022. V. 111. P. 18–22. https://doi.org/10.1016/j.procir.2022.08.107
- Boruah M., Phukon P., Saikia B.J., Dolui S.K. Electrical actuation of electroresponsive hydrogels based on poly (acrylamide-co-acrylic acid) / graphite suitable for biomedical applications // Polymer composites. 2014. V. 35. № 1. P. 27–36. https://doi.org/10.1002/pc.22630
- Khan S.A., Lazoglu I. Development of additively manufacturable and electrically conductive graphite–polymer composites // Progress in Additive Manufacturing. 2020. V. 5. № 2. P. 153–162. https://doi.org/10.1007/s40964-019-00102-95
- Gubaidullin A.T., Makarova A.O., Derkach S.R., Voron’ko N.G., Kadyirov A.I., Ziganshina S.A., Salnikov V.V., Zueva O.S., Zuev Yu.F. Modulation of molecular structure and mechanical properties of k-carrageenan-gelatin hydrogel with multi-walled carbon nanotubes // Polymers. 2022. V. 14. № 12. P. 2346. https://doi.org/10.3390/polym14122346.
- Кондрашов С.В., Грачев В.П., Акатенков Р.В., Алексашин В.М., Деев И.С., Аношкин И.В., Раков Э.Г., Иржак В.И. Модифицирование эпоксидных полимеров малыми добавками многослойных углеродных нанотрубок // Высокомолекулярные соединения. Серия А. 2014. Т. 56. № 3. С. 316–322. https://doi.org/10.7868/S2308112014030079
- Li R., Bao Z., Wang P., Deng Y., Fan J., Zhu X., Xia X., Song Y., Yao H., Li D. Gelatin-functionalized carbon nanotubes loaded with cisplatin for anti-cancer therapy // Polymers. 2023. V. 15. № 16. P. 3333. https://doi.org/10.3390/polym15163333
- Kuche K., Maheshwari R., Tambe V., Mak K.-K., Jogi H., Raval N., Pichika M.R., Tekade R.K. Carbon nanotubes (CNTs) based advanced dermal therapeutics: current trends and future potential // Nanoscale. 2018. V. 10. № 19. P. 8911–8937. https://doi.org/10.1039/C8NR01383G
- Wong B.S., Yoong S.L., Jagusiak A., Panczyk T., Ho H.K., Ang W.H., Pastorin G. Carbon nanotubes for delivery of small molecule drugs // Advanced Drug Delivery Reviews. 2013. V. 65. № 15. P. 1964–2015. https://doi.org/10.1016/j.addr.2013.08.005
- Yun J., Im J.S., Lee Y.-S., Kim H.-I. Electro-responsive transdermal drug delivery behavior of PVA/PAA/MWCNT nanofibers // European Polymer Journal. 2011. V. 47. № 10. P. 1893–1902. https://doi.org/10.1016/j.eurpolymj.2011.07.024
- Madeo L.F., Curcio M., Iemma F., Nicoletta F.P., Hampel S.; Cirillo G. Release of bioactive molecules from graphene oxide-alginate hybrid hydrogels: Effect of crosslinking method // C. 2023. V. 9. № 1. P. 8. https://doi.org/10.3390/c9010008
- Zeng L., Gowda B.H.J, Ahmed M.G., Abourehab M.A.S., Chen Z.S, Zhang C., Li J., Kesharwani P. Advancements in nanoparticle-based treatment approaches for skin cancer therapy // Molecular Cancer. 2023. V. 22. P. 10. https://doi.org/10.1186/s12943-022-01708-4
- Dalla Colletta A., Pelin M., Sosa S., Fusco L., Prato M., Tubaro A. Carbon-based nanomaterials and skin: An overview // Carbon. 2022. V. 196. P. 683–698. https://doi.org/10.1016/j.carbon.2022.05.036
- Palmer B.C., Phelan-Dickenson S.J., DeLouise L.A. Multi-walled carbon nanotube oxidation dependent keratinocyte cytotoxicity and skin inflammation // Particle and fibre toxicology. 2019. V. 16. № 1. P. 1–15. https://doi.org/10.1186/s12989-018-0285-x
- Park Y.H., Jeong S.H., Lee E.Y., Lee S.H., Choi B.H., Kim M.K., Son S.W. Assessment of dermal irritation potential of MWCNT // Toxicology and environmental health sciences. 2010. V. 2. P. 115–118. https://doi.org/10.1007/BF03216492
- Kim S.H., Lee D.H., Lee J.H., Yang J.Y., Shin H.S., Lee J., Jung K., Jeong J., Oh J.H., Lee J.K. Evaluation of the skin sensitization potential of carbon nanotubes using alternative in vitro and in vivo assays // Toxics. 2020. V. 8. № 4. P. 122. https://doi.org/10.3390/toxics8040122
- Vankoningsloo S., Piret J.P., Saout C., Noel F., Mejia J., Zouboulis C.C., Delhalle J., Lucas S., Toussaint O. Cytotoxicity of multi-walled carbon nanotubes in three skin cellular models: Effects of sonication, dispersive agents and corneous layer of reconstructed epidermis // Nanotoxicology. 2010. V. 4. № 1. P. 84–97. https//doi.org/10.3109/17435390903428869
- MacDonald R.A., Voge C.M., Kariolis M., Stegemann J.P. Carbon nanotubes increase the electrical conductivity of fibroblast-seeded collagen hydrogels // Acta Biomaterialia. 2008. V. 4. № 6. P. 1583–1592. https://doi.org/10.1016/j.actbio.2008.07.005
- Voge C.M., Johns J., Raghavan M., Morris M.D., Stegemann J.P. Wrapping and dispersion of multiwalled carbon nanotubes improves electrical conductivity of protein–nanotube composite biomaterials // J. Biomed. Mater. Res. Part A. 2013. V. 101. № 1. P. 231–238. https://doi.org/10.1002/jbm.a.34310
- Pikula K., Chaika V., Zakharenko A., Markina Z., Vedyagin A., Kuznetsov V., Gusev A., Park S., Golokhvast K. Comparison of the level and mechanisms of toxicity of carbon nanotubes, carbon nanofibers, and silicon nanotubes in bioassay with four marine microalgae // Nanomaterials. 2020. V. 10. № 3. P. 485. https://doi.org/10.3390/nano10030485
- Бадамшина Э.Р., Гафурова М.П., Эстрин Я.И. Модифицирование углеродных нанотрубок и синтез полимерных композитов с их участием // Успехи химии. 2010. Т. 79. № 11. С. 1027–1064.
- Гигиберия В.А., Арьев И.А., Лебовка Н.И. Устойчивость суспензий многослойных углеродных нанотрубок в органических растворителях в присутствии Triton X-165 // Коллоидный журнал. 2012. Т. 74. № 6. С. 696–701.
- Li F., Liu L., Yang Z., Li S. Dispersion of functionalized multi-walled carbon nanotubes in aqueous solution // Russian Journal of Physical Chemistry A. 2021. V. 95. P. 1009–1016. https://doi.org/10.1134/S0036024421050125
- Li H., Qiu Y. Dispersion, sedimentation and aggregation of multi-walled carbon nanotubes as affected by single and binary mixed surfactants // Royal Society Open Science. 2019. V. 6. № 7. P. 190241. https://doi.org/10.1098/rsos.190241
- Abreu B., Rocha J., Fernandes R.M., Regev O., Furo I., Marques E.F. Gemini surfactants as efficient dispersants of multiwalled carbon nanotubes: Interplay of molecular parameters on nanotube dispersibility and debundling // Journal of colloid and interface science. 2019. V. 547. P. 69–77. https://doi.org/10.1016/j.jcis.2019.03.082
- Гатауллин А.Р., Богданова С.А., Рахматуллина А.П., Галяметдинов Ю.Г. Диспергирование углеродных нанотрубок в растворах оксиэтилированных изононилфенолов // Журнал прикладной химии. 2017. Т. 90. № 11. С. 1489–1497.
- Гатауллин А.Р., Богданова С.А., Галяметдинов Ю.Г. Диспергирование фуллерена С60 в организованных средах // Жидкие кристаллы и их практическое использование. 2019. Т. 19. № 1. С. 6–13.
- Задымова Н.М. Коллоидно-химические аспекты трансдермальной доставки лекарств (обзор) // Коллоидный журнал. 2013. Т. 75. № 5. С. 543–556. https://doi.org/10.7868/S0023291213050194
- Sheeba F.R., Giles D., Shivakumar Swamy S.K., Menaka T. Study on permeation enhancement of Sparfloxacin from certain selected ointment bases // Der. Pharmacia Letter. 2012. V. 4. P. 1115–1118.
- Akhtar N., Rehman M.U., Khan H.M.S., Rasool F., Saeed T., Murtaza G. Penetration enhancing effect of polysorbate 20 and 80 on the in vitro percutaneous absorption of L-ascorbic acid // Tropical J. Pharm. Res. 2011. V. 10. № 3. P. 281. https://doi.org/10.4314/tjpr.v10i3.1
- Strati F., Neubert R., Opalka L., Kerth A., Brezesinski G. Non-ionic surfactants as innovative skin penetration enhancers: Insight in the mechanism of interaction with simple 2D stratum corneum model system // European Journal of Pharmaceutical Sciences. 2021. V. 157. P. 105620. https://doi.org/10.1016/j.ejps.2020.105620
- Deng Z., Yu R., Guo B. Stimuli-responsive conductive hydrogels: Design, properties, and applications // Materials Chemistry Frontiers. 2021. V. 5. № 5. P. 2092–2123. https://doi.org/10.1039/d0qm00868k
- Servant A., Methven L., Williams R.P., Kostarelos K. Electroresponsive polymer-carbon nanotube hydrogel hybrids for pulsatile drug delivery in vivo // Advanced Healthcare Materials. 2013. V. 2. № 6. P. 806–811. https://doi.org/10.1002/adhm.201200193
- Adorinni S., Rozhin P., Marchesan S. Smart hydrogels meet carbon nanomaterials for new frontiers in medicine // Biomedicines. 2021. V. 9. № 5. P. 570. https://doi.org/10.3390/biomedicines9050570
- Ткачев А.Г., Мищенко С.В., Негров В.Л., Меметов Н.Р., Пасько А.А., Блинов С.В., Турлаков Д.А. Промышленное производство углеродного наноструктурного материала “Таунит” // Наноиндустрия. 2007. № 2. С. 24–27.
- Shvartzman-Cohen R., Levi-Kalisman Y., Nativ-Roth E., Yerushalmi-Rozen R. Generic approach for dispersing single-walled carbon nanotubes: The strength of a weak interaction // Langmuir. 2004. V. 20. № 15. P. 6085–6088. https://doi.org/10.1021/la049344j
- Bandyopadhyaya R., Nativ-Roth E., Regev O., Yerushalmi-Rozen R. Stabilization of individual carbon nanotubes in aqueous solutions // Nano Letters. 2002. V. 2. № 1. P. 25–28. https://doi.org/10.1021/nl010065f
- de Almeida Carisio P., dos Santos Mendonca Y.G., Soares C.F.T., Reales O.A.M., de Moraes Rego Fairbairn E., Filho R.D.T. Dispersion of carbon nanotubes with different types of superplasticizer as a dispersing agent for self-sensing cementitious materials // Appl. Sci. 2021. V. 11. № 18. P. 8452. https://doi.org/10.3390/app11188452
- Predtechenskiy M.R., Khasin A.A., Bezrodny A.E., Bobrenok O.F., Dubov D.Y., Muradyan V.E., Saik V.O., Smirnov S.N. New perspectives in SWCNT applications: Tuball SWCNTs. Part 1 Tuball by itself – all you need to know about it // Carbon Trends. 2022. V. 8. P. 100175. https://doi.org/10.1016/j.cartre.2022.100175
- Youssry M., Al-Ruwaidhi M., Zakeri M. Physical functionalization of multi-walled carbon nanotubes for enhanced dispersibility in aqueous medium // Emergent Materials. 2020. V. 3. P. 25–32. https://doi.org/10.1007/s42247-020-00076-3
- Gataullin A.R., Bogdanova S.A., Galyametdinov Yu.G. Adsorption of ethoxylated isononylphenols on carbon nanotubes from aqueous solutions // ChemChemTech. 2021. V. 64. № 3. P. 46–51. https://doi.org/10.6060/ivkkt.20216403.6192
- Zaman A.C., Kaya F., Kaya C. A study on optimum surfactant to multiwalled carbon nanotube ratio in alcoholic stable suspensions via UV-Vis absorption spectroscopy and zeta potential analysis // Ceramics international. 2020. V. 46. № 18. P. 29120–29129. https://doi.org/10.1016/j.ceramint.2020.08.085
- Ткачев А.Г., Мележик А.В., Дьячкова Т.П., Блохин А.Н., Буракова Е.А., Пасько Т.В. Углеродные наноматериалы серии “Таунит”: производство и применение // Известия высших учебных заведений. Серия: Химия и химическая технология. 2013. Т. 56. № 4. С. 55–59.
- Захарычев Е.А., Кабина М.А., Разов Е.Н., Семенычева Л.Л. Исследование устойчивости водных суспензий функционализированных углеродных нанотрубок // Коллоидный журнал. 2016. Т. 78. № 5. С. 556–561. https://doi.org/10.7868/S0023291216050244
- Барань Ш., Картель Н., Месарош Р. Электрокинетический потенциал многослойных углеродных нанотрубок в водных растворах электролитов и ПАВ // Коллоидный журнал. 2014. Т. 76. № 5. С. 555–559. https://doi.org/10.7868/S0023291214050024
- Петренко Д.Б. Модифицированный метод Боэма для определения гидроксильных групп в углеродных нанотрубках // Вестник Московского государственного областного университета. 2012. № 1. С. 157–160.
- White B., Banerjee S., O’Brien S., Turro N.J., Herman I.P. Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes // J. Phys. Chem. C. 2007. V. 111. № 37. P. 13684–13690. https://doi.org/10.1021/jp070853e
- Selivanova N.M., Galeeva A.I., Galyametdinov Yu.G. Chitosan/lactic acid systems: Liquid crystalline behavior, rheological properties, and riboflavin release in vitro // Int. J. Mol. Sci. 2022. V. 23. № 21. P. 13207. https://doi.org/10.3390/ijms232113207
- Haider X.S., Park S.-Y., Saeed K., Farmer B.L. Swelling and electroresponsive characteristics of gelatin immobilized onto multi-walled carbon nanotubes // Sensors and Actuators B. 2007. V. 124. № 2. P. 517–528. https://doi.org/10.1016/j.snb.2007.01.024
- Малкин А.Я., Исаев А.И. Реология: концепции, методы, приложения. СПб.: Профессия, 2007. 560 с.
- Лебовка Н.И., Лисунова М.А., Бойко Ю.П., Мележик А.В. Исследование перколяционного поведения электрической проводимости и вязкости в водных суспензиях многослойных углеродных нанотрубок // Коллоидные системы и новейшие технологии. 2007. Т. 5. № 1. С. 165–175.
补充文件
