Spectral-kinetic studies of some homodimeric styrylcyanine dyes in solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The spectral and kinetic characteristics of the dye Sbt ((E)-2-(4-(dimethylamino)styryl)-3-methylbenzo[d]thiazol-3-ium iodide) and its homodimers Dbt-5, Dbt-10 in chloroform and its binary mixtures with solvents of different polarity were studied. It was found that with an increase in the proportion of hexane in chloroform solutions of the studied dyes, non-fluorescent H-aggregates are formed. It was found that the spectral and photophysical parameters of the studied dyes depend on the polarity and viscosity of the solvents. Quantum-chemical calculations of the charge distribution and potential energy in the ground and excited states for the molecules of the studied compounds were carried out. Sbt and Dbt-10 dyes are characterized by higher values of quantum yields and lifetime of the excited state in a viscous medium, which is associated with the formation of the TICT (twisted intramolecular charge transfer) state. The transition of molecules to this state leads to effective quenching of fluorescence.

Full Text

Restricted Access

About the authors

A. Sh. Yarmukhamedov

Samarkand State University named after Sh. Rashidov

Email: kurtaliev@rambler.ru
Uzbekistan, Samarkand

E. N. Kurtaliev

Samarkand State University named after Sh. Rashidov

Author for correspondence.
Email: kurtaliev@rambler.ru
Uzbekistan, Samarkand

I. Khairov

Samarkand State University named after Sh. Rashidov

Email: kurtaliev@rambler.ru
Uzbekistan, Samarkand

N. Nizomov

Samarkand State University named after Sh. Rashidov

Email: kurtaliev@rambler.ru
Uzbekistan, Samarkand

M. R. Malikov

Samarkand State University named after Sh. Rashidov

Email: kurtaliev@rambler.ru
Uzbekistan, Samarkand

References

  1. Shettigar S., Umesh G., Poornesh P., Manjunatha K.B., Asiri A.M. // Dyes Pigm. 2009. V. 83. № 2. P. 207.
  2. Berdnikova D.V., Sosnin N.I., Fedorova O.A., Ihmels H. // Org. Biomol. Chem. 2018. V. 16. P. 545.
  3. Matiukas A., Mitrea B.G., Qin M., Pertsov A.M., Shvedko A.G., Warren M.D., Zaitsev A.V., Wuskell J.P., Wei M., Watras J., Loew L.M. // Heart Rhythm. 2007. V. 4. № 11. Р. 1441.
  4. Li Q., Lee J.-S., Ha Ch., Park Ch. B., Yang G., Gan W.B., Chang Y.T. // Angew. Chem. 2004. V. 116. P. 6491.
  5. Martins S., Avo J., Lima J., Nogueira J., Andrade L., Mendes A., Pereira A., Branco P.S. // J. Photochem. Photobiol. A. 2018. V. 353. P. 564.
  6. Lee Ch.Ch., Hu A.T. // Dyes Pigm. 2003. V. 59. № 1. P. 63.
  7. Behera P.K., Mohapatra S., Patel S., Mishra B.K. // J. Photochem. Photobiol. 2005. V. 169. P. 253.
  8. Kurtaliev E.N. // Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011. V. 81. № 1. P. 449.
  9. Lebedeva A.Yu., Fedorova O.A., Tsvetkov V.B., Grinberg V.Y., Grinberg N.V., Burova T.V., Dubovik A.S., Babievsky K.K., Fedorov Y.V. // Dyes Pigm. 2018. V. 157. P. 80.
  10. Kurtaliev E.N, Nizomov N.N, Yarmukhamedov A.Sh. // J. Mol. Struc. 2020. V. 1203. P. 1.
  11. Kurtaliev E.N., Yarmukhamedov A.Sh., Djamalova A.A., Nizomov N., Terekhov S.N. // J. Fluoresc. 2024.
  12. Kovalska V.B., Kryvorotenko D.V., Balanda A.O., Losytskyy M.Yu., Tokar V.P., Yarmoluk S.M. // Dyes and Pigm. 2005. V. 67. P. 47.
  13. Tokar V.P., Losytskyy M.Yu., Kovalska V.B., Kryvorotenko D.V., Balanda A.O., Prokopets V.M., Galak M.P., Dmytruk I.M., Yashchuk V.M., Yarmoluk S.M. // J. Fluoresc. 2006. V. 16. № 6. P. 783.
  14. Arbeloa F.L., Ojeda P.R., Arbeloa I.L. // J. Lumin. 1989. V. 44. № 1–2. P. 105.
  15. http://www.openmopac.net
  16. Stewart J.P. // J. Comput. Aided Mol. Desing. 1990. V. 4. P. 1.
  17. Sulatskaya A.I., Sulatsky M.I., Povarova O.I, Rodina N.P., Kuznetsova I.M., Lugovskii A.A, Voropay E.S., Lavysh A.V., Maskevich A.A., Tureverov K.K. // Dyes and Pigm. 2018. V. 157. P. 385.
  18. Deng Y., Yuan W., Jia Zh., Liu G. // J. Phys. Chem. B 2014. V. 118. P. 14536.
  19. Nizomov N., Kurtaliev E.N., Rahimov S.I. // J. Mol. Struc. 2012. V. 1029. P.142.
  20. Kobayashi N. // J-Aggregates. World scientific, Singapore. 1996. P. 228.
  21. Heyne B. // Photochem. Photobiol. Sci. 2016. V.15. P.1103.
  22. Ищенко А.А. Структура и спектрально-люминесцентные свойства полиметиновых красителей. Науково думка: Киев. 1994. 246 с.
  23. Maskevich A.A., Stsiapura V.I., Kuzmitsky V.A., Kuznetsova I.M., Povarova O.I., Uversky V.N., Tureverov K.K. // J. Proteome Res. 2007. V. 6. P. 1382.
  24. Jana R., Seth D. // J. Photoch. Photobio. A. 2022. V. 427. P. 113842.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Quantum-chemical calculations of the structure and potential energies in the ground and excited states of the Sbt dye molecule: (a) optimized structure of the molecule in the ground state, (б) dependence of the potential energy on the angle φ in the ground and excited states, (в) distribution of electron density in the ground (HOMO) and excited (LUMO) states at different angles φ.

Download (603KB)
3. Fig. 2. Absorption (a) and fluorescence (б) spectra of Sbt dye (c=10–5 M) in a mixture of binary solvents: 1 – chloroform, 2 – 1% chloroform+99% ethanol, 3 – 1% chloroform+99% DMF, 4 – 1% chloroform+99% dioxane, 5 – 1% chloroform+99% hexane.

Download (1MB)
4. Fig. 3. Absorption (a) and fluorescence (b) spectra of Dbt-5 dyes in chloroform (c = 10–5 M) as different amounts of hexane were added: 1 – 0, 2 – 30%, 3 – 40%, 4 – 45%, 5 – 50%, 6 – 75% hexane.

Download (553KB)
5. Fig. 4. Absorption (a) and fluorescence (б) spectra of Dbt-10 dye in chloroform (c = 10–5 M) as different amounts of hexane were added: 1 – 0, 2 – 50%, 3 – 60%, 4 – 70%, 5 – 99% hexane.

Download (1MB)
6. Fig. 5. Kinetics of fluorescence decay of styrylcyanine dyes (a) Sbt, (б) Dbt-5, (в) Dbt-10: 1 – IRF, 2 – 1% chloroform+99% ethanol, 3 – chloroform, 4 – 1% chloroform+99% glycerol.

Download (636KB)
7. Table 1-1

Download (84KB)
8. Table 1-2

Download (107KB)
9. Table 1-3

Download (109KB)

Copyright (c) 2025 Russian Academy of Sciences