Photophysical properties of pyrene-containing biphotocromic dyads and corresponding cyclobutanes formed from dyads in the [2+2] photocycloaddition reaction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The photophysical properties of biphotochromic dyads DoX and D10 containing two identical photochromes, 2-[2-(pyrene-1-yl)ethenyl]-quinoline (PEQ), linked by bridge groups of different lengths, as well as the corresponding dipyrenylcyclobutanes CBoX and CB10 formed from the dyads in the [2+2] photocycloaddition reaction (PCA) have been investigated by time-resolved emission spectroscopy (TRES). On the basis of TRES, the number of emitters was determined, their emission spectra, excited state lifetimes, and rate constants of competitive physical and chemical processes (emission, energy transfer, and reactions) were calculated. In dyads, the formation of excimers, possible intermediates of the PCA reaction, was detected by the appearance of emitters with lifetimes significantly increased compared to the model PEQ-photochrome. In cyclobutanes, a decrease in the lifetime of pyrene substituents as compared to 1-methylpyrene shows the energy transfer from substituents to the cyclobutane ring, which, according to the predissociation mechanism, initiates the ring-opening reaction (retro-PCA). In addition, CBoX shows the presence of non-emitting conformers. Quantum chemical calculations by DFT method confirmed the possibility of formation of different conformers of cyclobutane CBoX, differing in the relative position of pyrenyl substituents and the degree of their interaction with each other.

Full Text

Restricted Access

About the authors

M. F. Budyka

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS

Author for correspondence.
Email: budyka@icp.ac.ru
Russian Federation, Chernogolovka

V. M. Li

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS

Email: budyka@icp.ac.ru
Russian Federation, Chernogolovka

T. N. Gavrishova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS

Email: budyka@icp.ac.ru
Russian Federation, Chernogolovka

S. A. Tovstun

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS

Email: budyka@icp.ac.ru
Russian Federation, Chernogolovka

References

  1. Liang C.K., Desvergne J.P., Bassani D.M. // Photochem. Photobiol. Sci. 2014. V. 13. P. 316.
  2. Perrier A., Maurel F., Jacquemin D. // Acc. Chem. Res. 2012. V. 45. P. 1173.
  3. Kirkus M., Janssen R.A. J., Meskers S.C. J. // J. Phys. Chem. A. 2013. V. 17. P. 4828.
  4. Margulies E.A., Shoer L.E., Eaton S.W., Wasielewski M.R. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 23735.
  5. Long S., Wang Y., Vdovic S., Zhou M., Yan L., Niu Y., Guo Q., Xia A. // Phys. Chem. Chem. Phys. 2015. V. 17. P. 18567.
  6. Cho D.W., Fujitsuka M., Sugimoto A., Majima T. // J. Phys. Chem. A. 2008. V. 112. P. 7208.
  7. Wang S., Bohnsack M., Megow S., Renth F., Temps F. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 2080.
  8. Kucukoz B., Adinarayana B., Osuka A., Albinsson B. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 16477.
  9. Letrun R., Lang B., Yushchenko O., Wilcken R., Svechkarev D., Kolodieznyi D., Riedle E., Vauthey E. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 30219.
  10. Chahal M.K., Liyanage A., Gobeze H.B., Payne D.T., Ariga K., Hill J.P., D’Souza F. // Chem. Commun. 2020. V. 56. P. 3855.
  11. Doddi S., Ramakrishna B., Venkatesha Y., Bangl P.R. // RSC Adv. 2015. V. 5. P. 56855.
  12. Kim D., Park S.Y. // Optical Mater. 2018. 1800678.
  13. Szacilowski K. // Chem. Rev. 2008. V. 108. P. 3481.
  14. Будыка М.Ф. // Успехи химии. 2017. Т. 86. С. 181.
  15. Andreasson J., Pischel U. // Coord. Chem. Rev. 2021. V. 429. 213695.
  16. Будыка М.Ф., Поташова Н.И., Гавришова Т.Н., Ли В.М., Гак В.Ю., Гринева И.А. // Химия высоких энергий. 2018. Т. 52. С. 204.
  17. Будыка М.Ф., Ли В.М., Гавришова Т.Н. // Химия высоких энергий. 2024. Т. 58. С. 77.
  18. Будыка М.Ф., Ли В.М., Гавришова Т.Н. // Химия высоких энергий. 2025. Т. 59. С. 26.
  19. Budyka M.F., Gavrishova T.N., Li V.M., Potashova N.I., Fedulova J.A. // Spectrochim. Acta Part A. 2022. V. 267. 120565.
  20. Budyka M.F., Fedulova J.A., Gavrishova T.N., Li V.M., Potashova N.I., Tovstun S.A. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 24137.
  21. Будыка М.Ф., Гавришова Т.Н., Ли В.М., Дозморов С.А. // Изв. АН. Сер. хим. 2023. Т. 72. С. 2013.
  22. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT, 2013.
  23. Mazzucato U., Momicchioli F. // Chem. Rev. 1991. V. 91. P. 1679.
  24. Schillmoller T., Herbst-Irmer R., Stalke D. // Adv. Optical Mater. 2021. V. 9. 2001814.
  25. Будыка М.Ф. // Успехи химии. 2012. Т. 81. С. 477.
  26. Ellsei F., Aloisi G.G., Latterini L., Galiazzo G., Gorner H. // J. Chem. Soc. Faraday Trans. 1995. V. 91. P. 3117.
  27. Kovalenko N.P., Abdukadirov A., Gerko V.I., Alfimov M.V. // J. Photochem. 1980. V. 12. P. 59.
  28. Doi T., Kawai H., Murayama K., Kashida H., Asanuma H. // Chem. Eur. J. 2016. V. 22. P. 10533.
  29. Truong V.X., Li F., Ercole F., Forsythe J.S. // ACS Macro Lett. 2018. V. 7. P. 464.
  30. Budyka M.F., Gavrishova T.N., Li V.M., Potashova N.I., Ushakov E.N. // ChemistrySelect. 2021. V. 6. P. 3218.
  31. Winnik F.M. // Chem. Rev. 1993. V. 93. P. 587.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. The [2+2]-photocycloaddition reaction in EE isomers of dyads D10 and DoX with the formation of tetrasubstituted cyclobutanes CB10 and CBoX.

Download (555KB)
3. Scheme 2. Structure of model compounds, (E)-8-octyloxy-2-[2-(pyren-1-yl)ethenyl]-quinoline (M1) and 1-methylpyrene (MP).

Download (193KB)
4. Scheme 3. Possible conformers of the rctt isomer of cyclobutane with axial and equatorial positions of substituents; Q is quinolyl, P is pyrenyl, the bridging group between the quinoline substituents is not shown. The numbering of the atoms of the cyclobutane ring is given.

Download (92KB)
5. Fig. 1. Time-resolved emission spectra (TRES) of the D10 dyad when excited at a wavelength of 372 nm.

Download (1MB)
6. Fig. 2. Fluorescence decay kinetics (excitation at 372 nm): 1 – model PEQ photochrome M1 (observation at 460 nm), 2 – dyad D10 (observation at 500 nm), 3 – dyad DoX (observation at 472 nm). The red curve is the instrument response function (IRF), the black curves are approximations of the experimental kinetics taking into account the shape of the IRF.

Download (900KB)
7. Fig. 3. The emission spectra of emitters D10-E1 (1), D10-E2 (2), D10-E3 (3), normalized to the maximum of the total spectrum, calculated using TRES data (excitation at 372 nm), and their total spectrum taking into account lifetimes (4), the stationary fluorescence spectrum of the D10 dyad (5, excitation at 391 nm).

Download (489KB)
8. Fig. 4. The emission spectra of emitters DoX-E1 (1), DoX-E2 (2), DoX-E3 (3) and their total spectrum (4), calculated according to TRES data (excitation at 372 nm), normalized to the maximum of the total spectrum, and the stationary fluorescence spectrum of the DoX dyad (5, excitation at 392 nm).

Download (530KB)
9. Fig. 5. Fluorescence decay kinetics in methylene chloride (excitation at 284 nm) 1 – 1-methylpyrene MP (observation at 378 nm): 2 – cyclobutane CB10 (observation at 380 nm): 3 – cyclobutane CBoX (observation at 379 nm). The red curve is the instrument response function (IRF), the black curves are approximations of the experimental kinetics taking into account the shape of the IRF.

Download (938KB)
10. Fig. 6. The emission spectra of emitters CB10-E1 (1), CB10-E2 (2) and their total spectrum (3), calculated according to TRES data (excitation at 284 nm), normalized to the maximum of the total spectrum, and the stationary fluorescence spectrum of cyclobutane CB10 (4, excitation at 352 nm).

Download (434KB)
11. Fig. 7. The emission spectra of the emitters CBoX-E1 (1), CBoX-E2 (2) and their total spectrum (3), calculated according to the TRES data (excitation at 284 nm), normalized to the maximum of the total spectrum, and the stationary fluorescence spectrum of cyclobutane CBoX (4, excitation at 351 nm).

Download (495KB)
12. Fig. 8. Structures of cyclobutane CBoX conformers optimized at the M06-2X/6-31G* level.

Download (488KB)
13. Fig. 9. Structure of filled molecular orbitals of cyclobutane CBoX conformers calculated at the level of M06-2X/6-31G*, the highest occupied (HOMO) and neighboring (HOMO-1) orbitals.

Download (939KB)

Copyright (c) 2025 Russian Academy of Sciences