Fourier transform IR spectroscopic study of gamma-irradiated papain

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In papain macromolecules irradiated with γ-rays, fragments with terminal primary amino groups are formed, which appear in FTIR spectra as a broad peak with a maximum at 3440 cm–1, as well as an intense absorption band centred at 1706 cm–1 as a result of valence vibrations of carbonyl groups. The intensity of the absorption bands of the radiolysis products increases linearly with the irradiation dose of papain. At the same time, with increasing irradiation dose, a marked weakening of the intensity of the maxima of the absorption peaks of the peptide bond is observed, which indicates radiation destruction of the main chain of papain.

Sobre autores

S. Allayarov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: sadush@icp.ac.ru
Rússia, Chernogolovka

T. Rudneva

Institute of microelectronics technology and high purity materials, Russian Academy of Sciences

Email: sadush@icp.ac.ru
Rússia, Chernogolovka

S. Demidov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: sadush@icp.ac.ru
Rússia, Chernogolovka

U. Allayarova

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: sadush@icp.ac.ru
Rússia, Chernogolovka

S. Chekalina

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: sadush@icp.ac.ru
Rússia, Chernogolovka

Bibliografia

  1. Varca G.H.C., Kadlubowski S., Wolszczak M., Lugão A.B., Rosiak J.M., Ulanski P. // J. Biolog. Macromol.2016. V. 92. P. 654.
  2. Varca G.H.C., Ferraz C.C.F., Lopes P.S., Mathor M.B., Grasselli M., Lugão A.B. // Rad. Phys. Chem.2014. V. 94. P. 181.
  3. Pearson J.F., Slifkin M.A. // Spectrochim. Acta. 1972. V. 28A. P. 2403.
  4. Carey P. Biochemical applications of Raman and resonance Raman spectroscopies. M.: Mir, 1985. 272 p.
  5. Wolpert M., Hellwig P. // Spectrochim. Acta. 2006. V. 64A. P. 987.
  6. Pei Y., Wang J., Wu K., Xuan X., Lu X. // Separ. Purific. Technol. 2009. V. 64. № 3. P. 288.
  7. Socrates G. Infrared and Raman Characteristic Group Frequencies Tables and Charts Third Edition. NY: John Wiley & Sons, Inc., 2004.
  8. Bai Z., Chao Y., Zhang M., Han C., Zhu W., Chang Y. et al. // J. Chem. 2013. V. 2013. Article 938154.
  9. Samsonova L.G. Application of IR and PMR spectroscopy in the study of the structure of organic molecules Textbook. 2016. Tomsk: Publishing House of Tomsk State University, 60 p.
  10. Tarasevich B.N. IK spektry osnovnykh klassov organicheskikh soedinenii. Spravochnye materialy (IR Spectra of Main Classes of Organic Compounds: Reference Materials), M.: Khimicheskii Fakul’tet MGU, 2012.
  11. Kanbargi K.D., Sonawane S.K., Arya S.S. // Int. J. Food Prop. 2017. V. 20. № 12. P. 3215.
  12. Timofeev-Resovsky N.V., Savich A.V., Shalnov M.I. Introduction to Molecular Radiobiology: Physical and Chemical Basis. M.: Medicine, 1981. 319 p.
  13. Koenig L.L. // Uspekhi Chemii. 1975. V. XLIV. Iss. 6. P. 1109.
  14. Szymanska-Chargot M., Zdunek A. // Food Biophysics. 2013. V. 8. P. 29.
  15. Kuptsov А.Kh., Zhizhin G.N. FT-Raman and FT-IR spectra of polymers. M.: Fizmatlit, 2001. 657 p.
  16. Sedakova V.A., Gromova E.S. // Bulletin of Pharmacy. 2011. № 4. P. 17.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024