Hypothetical possibility of hydrogen octaoxide formation in cavitation plasma discharge

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This study examines the characteristics of water treated by cavitation plasma electric discharge. During the discharge process, hydroxyl radicals, hydrogen atoms and oxygen atoms are produced. The cycling of water through the discharge region results in the generation of secondary products with oxidising, reducing and slightly alkaline properties. The yield of oxidising and reducing agents was measured as a function of the total energy released in the discharge. The findings indicate that during the cyclic treatment of under the influence of cavitation discharge, hydrogen peroxide (H2O8) is produced. At a dose of 240 J/10 ml, the concentration is approximately ~10–3 mol/l.

全文:

受限制的访问

作者简介

N. Aristova

Nizhny Tagil Technological Institute, Yeltsin Ural Federal University

Email: i.m.piskarev@gmail.com
俄罗斯联邦, Nizhny Tagil

I. Ivanova

Institute of Biology and Biomedicine

Email: i.m.piskarev@gmail.com
俄罗斯联邦, Nizhny Novgorod

N. Gul`ko

IPLASMA

Email: i.m.piskarev@gmail.com
俄罗斯联邦, Moscow

A. Makarov

IPLASMA

Email: i.m.piskarev@gmail.com
俄罗斯联邦, Moscow

I. Piskarev

Skobeltsyn Research Institute of Nuclear Physics, Moscow State University

编辑信件的主要联系方式.
Email: i.m.piskarev@gmail.com
俄罗斯联邦, Moscow, 119992

参考

  1. Rezaei F., Vanraes P., Nikiforov A. et al. // Materials. 2019. V. 12. P. 2751.
  2. Ihara S., Sakai T., Yoshida Y., Nishiyama H. // J. Electrostatics. 2018. V. 93. P. 110.
  3. Piskarev I.M. // IEEE Transactions on Plasma Science. 2021. V. 49. № 4. P. 1363.
  4. Levanov A.V., Sakharov D.V., Dashkova A.V. et al. // Eur. J. Inorg. Chem. 2011. P. 5144.
  5. Levanov A.V., Isaikina O.Ya. // J. Phys. Chem. 2022. V. 96. № 6. P. 843.
  6. Betul A.Y. // Word J. Adv. Res. Rev. 2021. V. 12. № 2. P. 179.
  7. Abramov V.O., Abramova A.V., Cravotto G. et al. // Ultrasonics – Sonochemistry. 2021. V. 70. 105323.
  8. Marsalek B., Marsalkova E., Odehnalova K. et al. // Water. 2020. V. 12. P. 8.
  9. Filipi A., Dobnik D., Guti'errez-Aguirre I. et al. // Env. Int. 2023. V. 182. 108285.
  10. Ihara S., Hirohata T., Kominato Y. et al. // Electrical Eng. Japan. 2014. V. 186. № 4. P. 656.
  11. Estifaee P., Su X., Yannam S.k. et al. // Sci. Rep. 2019. V. 9. Article 2326.
  12. Piskarev I.M., Ivanova I.P. // Plasma Chemistry and Plasma Processing. 2021. V. 41. P. 447.
  13. Charlot G. Les methods de la chimie analytique. in analyse quantitative menerale. Part II. Ed. Paris. France. Masson et Cie, 1961.
  14. Pikaev A.K. Modern radiation chemistry. Radiolysis of gases and liquids. M.: Nauka, 1986.
  15. Piskarev I.M., Ushkanov V.A., Aristova N.A., et al. // Biophysics. 2010. V. 55. № 1. P. 19.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The block diagram of the experiment. 1 – Flow cavitation plasma reactor, 2 – electrodes, 3 – voltage monitoring, 4 – pulse generator, 5 – flow meter, 6 – pressure gauge, 7 – supply pump, 8 – tank with treated water, 9 – spectrometer.

下载 (84KB)
3. Fig. 2. The emission spectrum of a discharge in a cavitation cavity.

下载 (58KB)
4. 3. Dependence of the concentration of [C] mmol/l, reducing agents (1) and oxidizing agents (2) formed in water under the action of an electric discharge in a cavitation cavity on the dose, J/10 ml.

下载 (67KB)

版权所有 © Russian Academy of Sciences, 2024