Conformational structure of a complex of two oppositely charged polyelectrolytes on the surface of a charged spherical metallic nanoparticle
- Autores: Kruchinin N.Y.1, Kucherenko M.G.1
-
Afiliações:
- Orenburg State University
- Edição: Volume 58, Nº 6 (2024)
- Páginas: 436-446
- Seção: GENERAL QUESTIONS
- URL: https://ter-arkhiv.ru/0023-1193/article/view/681210
- DOI: https://doi.org/10.31857/S0023119324060034
- EDN: https://elibrary.ru/TIDRZO
- ID: 681210
Citar
Resumo
This study employs molecular dynamics to investigate the conformational changes of a complex comprising two oppositely charged polyelectrolytes and a polyampholyte block copolymer adsorbed on the surface of a spherical metallic nanoparticle, as a function of its electrical charge. A mathematical model is presented for the rearrangement of two macromolecular shells of different signs spread on a charged spherical nanoparticle, together with an estimate of the stiffness of the polyelectrolyte chain as a function of its charge. Radial distributions of the average density of atoms of the polyelectrolyte complex and block copolymer situated on the surface of a charged spherical metallic nanoparticle are calculated. The polyelectrolytes with differing charges in the complex, along with the block copolymer, formed a tight envelope around the neutral spherical nanoparticle. As the absolute value of the nanoparticle charge increased, the macromolecular edge underwent swelling, resulting in the formation of two layers comprising differently charged polyelectrolytes or block copolymer fragments.
Palavras-chave
Texto integral

Sobre autores
N. Kruchinin
Orenburg State University
Autor responsável pela correspondência
Email: kruchinin_56@mail.ru
Center of Laser and Informational Biophysics
Rússia, OrenburgM. Kucherenko
Orenburg State University
Email: kruchinin_56@mail.ru
Center of Laser and Informational Biophysics
Rússia, OrenburgBibliografia
- Theodosiou M., Boukos N., Sakellis E. et al. // Colloids and Surfaces B: Biointerfaces. 2019. V. 183. P. 110420.
- Chen G., Song F., Xiong X., Peng X. // Ind. Eng. Chem. Res. 2013. V. 52. P. 11228.
- Mieszawska A.J., Mulder W.J.M., Fayad Z.A., Cormode D.P. // Mol. Pharmaceutics. 2013. V. 10. P. 831.
- Dallari C., Lenci E., Trabocchi A. et al. // ACS Sens. 2023. V. 8. P. 3693.
- Huang H., Liu R., Yang J. et al. // Pharmaceutics. 2023. V. 15. P. 1868.
- Sproncken C.C.M., Gumí-Audenis B., Foroutanparsa S. et al. // Macromolecules. 2023. V. 56. P. 226.
- Bakhtiari S.E., Joubert v, Pasparakis G. et al. // European Polymer Journal. 2023. V. 189. P. 111977.
- Lueckheide M., Vieregg J.R., Bologna A.J. et al. // Nano Lett. 2018. V. 18. P. 7111.
- Huang B., Wen J., Yu H. et al. // Journal of Molecular Structure. 2022. V. 1256. P. 132510.
- Fuller M., Kӧper I. // Polymers. 2018. V. 10. P. 1336.
- Kucherenko M.G., Izmodenova S.V., Kruchinin N.Yu., Chmereva T.M. // High Energy Chem. 2009. V. 43. P. 592.
- Kruchinin N.Yu., Kucherenko M.G. // Colloid Journal. 2019. V. 81. P. 110.
- Kruchinin N.Yu., Kucherenko M.G. // Surfaces and Interfaces. 2021. V. 27. P. 101517.
- Kruchinin N.Yu., Kucherenko M.G. // High Energy Chemistry. 2022. V. 56. №. 6. P. 499.
- Kruchinin N.Yu., Kucherenko M.G. // Polymer Science Series A. 2023. V. 65. P. 224.
- Kruchinin N.Yu. // Nanosystems: Physics, Chemistry, Mathematics. 2023. V. 14. P. 719.
- Kruchinin N.Yu., Kucherenko M.G., Neyasov P.P. // High Energy Chemistry. 2023. V. 57. P. 459.
- Kruchinin N.Yu., Kucherenko M.G. // Russian Journal of Physical Chemistry A. 2022. V. 96. № 3. P. 622.
- Kucherenko M. G., Kruchinin N. Yu., Neyasov P.P. // Eurasian Physical Technical Journal. 2022. V. 19. № 2 (40). P. 19–29.
- Kruchinin N.Yu., Kucherenko M. G. // Polymer Science Series A. 2022. V. 64. № 3. P. 240.
- Phillips J.C., Braun R., Wang W. et al. // J. Comput. Chem. 2005. V. 26. P. 1781.
- Mhashal A.R, Roy S. // PLoS One. 2014. V. 9. Is. 12. P. e114152
- MacKerell A.D. Jr., Bashford D., Bellott M. et al. // J. Phys. Chem. B. 1998. V. 102. P. 3586.
- Huang J., Rauscher S., Nawrocki G. et al. // Nature Methods. 2016. V. 14. P.71.
- Heinz H., Vaia R.A., Farmer B.L., Naik R.R. // J. Phys. Chem. C. 2008. V. 112. P. 17281.
- Miyata T., Kawagoe Y., Okabe T. et al. // Polymer Journal. 2022. V. 54. P. 1297.
- Farhadian N., Kazemi M.S., Baigi F.M., Khalaj M. // Journal of Molecular Graphics and Modelling. 2022. V. 116. P. 108271.
- Rabani R., Saidi M.H., Rajabpour A. et al. // Langmuir. 2023. V. 39. P. 15222.
- Zhang C., Jia H., Zhang Y., Du S. // J. Phys. Chem. B. 2023. V. 127. P 9543.
- Gutiérrez-Varela O., Lombard J., Biben T. et al. // Langmuir. 2023. V. 39.P. 18263.
- Wang M., Ni S., Yin Y. et al. // Langmuir. 2024. V. 40. P. 1295.
- Darden T., York D., Pedersen L. // J. Chem. Phys. 1993. V. 98. P. 10089.
- Jorgensen W.L., Chandrasekhar J., Madura J.D. et al. // J. Chem. Phys. 1983. V. 79. P. 926.
- Shankla M., Aksimentiev A. // Nature Communications. 2014. V. 5. P. 5171.
- Chen P., Zhang Z., Gu N., Ji M. // Molecular Simulation. 2018. V. 44. P. 85.
Arquivos suplementares
