Conformational structure of a complex of two oppositely charged polyelectrolytes on the surface of a charged spherical metallic nanoparticle

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This study employs molecular dynamics to investigate the conformational changes of a complex comprising two oppositely charged polyelectrolytes and a polyampholyte block copolymer adsorbed on the surface of a spherical metallic nanoparticle, as a function of its electrical charge. A mathematical model is presented for the rearrangement of two macromolecular shells of different signs spread on a charged spherical nanoparticle, together with an estimate of the stiffness of the polyelectrolyte chain as a function of its charge. Radial distributions of the average density of atoms of the polyelectrolyte complex and block copolymer situated on the surface of a charged spherical metallic nanoparticle are calculated. The polyelectrolytes with differing charges in the complex, along with the block copolymer, formed a tight envelope around the neutral spherical nanoparticle. As the absolute value of the nanoparticle charge increased, the macromolecular edge underwent swelling, resulting in the formation of two layers comprising differently charged polyelectrolytes or block copolymer fragments.

Texto integral

Acesso é fechado

Sobre autores

N. Kruchinin

Orenburg State University

Autor responsável pela correspondência
Email: kruchinin_56@mail.ru

Center of Laser and Informational Biophysics

Rússia, Orenburg

M. Kucherenko

Orenburg State University

Email: kruchinin_56@mail.ru

Center of Laser and Informational Biophysics

Rússia, Orenburg

Bibliografia

  1. Theodosiou M., Boukos N., Sakellis E. et al. // Colloids and Surfaces B: Biointerfaces. 2019. V. 183. P. 110420.
  2. Chen G., Song F., Xiong X., Peng X. // Ind. Eng. Chem. Res. 2013. V. 52. P. 11228.
  3. Mieszawska A.J., Mulder W.J.M., Fayad Z.A., Cormode D.P. // Mol. Pharmaceutics. 2013. V. 10. P. 831.
  4. Dallari C., Lenci E., Trabocchi A. et al. // ACS Sens. 2023. V. 8. P. 3693.
  5. Huang H., Liu R., Yang J. et al. // Pharmaceutics. 2023. V. 15. P. 1868.
  6. Sproncken C.C.M., Gumí-Audenis B., Foroutanparsa S. et al. // Macromolecules. 2023. V. 56. P. 226.
  7. Bakhtiari S.E., Joubert v, Pasparakis G. et al. // European Polymer Journal. 2023. V. 189. P. 111977.
  8. Lueckheide M., Vieregg J.R., Bologna A.J. et al. // Nano Lett. 2018. V. 18. P. 7111.
  9. Huang B., Wen J., Yu H. et al. // Journal of Molecular Structure. 2022. V. 1256. P. 132510.
  10. Fuller M., Kӧper I. // Polymers. 2018. V. 10. P. 1336.
  11. Kucherenko M.G., Izmodenova S.V., Kruchinin N.Yu., Chmereva T.M. // High Energy Chem. 2009. V. 43. P. 592.
  12. Kruchinin N.Yu., Kucherenko M.G. // Colloid Journal. 2019. V. 81. P. 110.
  13. Kruchinin N.Yu., Kucherenko M.G. // Surfaces and Interfaces. 2021. V. 27. P. 101517.
  14. Kruchinin N.Yu., Kucherenko M.G. // High Energy Chemistry. 2022. V. 56. №. 6. P. 499.
  15. Kruchinin N.Yu., Kucherenko M.G. // Polymer Science Series A. 2023. V. 65. P. 224.
  16. Kruchinin N.Yu. // Nanosystems: Physics, Chemistry, Mathematics. 2023. V. 14. P. 719.
  17. Kruchinin N.Yu., Kucherenko M.G., Neyasov P.P. // High Energy Chemistry. 2023. V. 57. P. 459.
  18. Kruchinin N.Yu., Kucherenko M.G. // Russian Journal of Physical Chemistry A. 2022. V. 96. № 3. P. 622.
  19. Kucherenko M. G., Kruchinin N. Yu., Neyasov P.P. // Eurasian Physical Technical Journal. 2022. V. 19. № 2 (40). P. 19–29.
  20. Kruchinin N.Yu., Kucherenko M. G. // Polymer Science Series A. 2022. V. 64. № 3. P. 240.
  21. Phillips J.C., Braun R., Wang W. et al. // J. Comput. Chem. 2005. V. 26. P. 1781.
  22. Mhashal A.R, Roy S. // PLoS One. 2014. V. 9. Is. 12. P. e114152
  23. MacKerell A.D. Jr., Bashford D., Bellott M. et al. // J. Phys. Chem. B. 1998. V. 102. P. 3586.
  24. Huang J., Rauscher S., Nawrocki G. et al. // Nature Methods. 2016. V. 14. P.71.
  25. Heinz H., Vaia R.A., Farmer B.L., Naik R.R. // J. Phys. Chem. C. 2008. V. 112. P. 17281.
  26. Miyata T., Kawagoe Y., Okabe T. et al. // Polymer Journal. 2022. V. 54. P. 1297.
  27. Farhadian N., Kazemi M.S., Baigi F.M., Khalaj M. // Journal of Molecular Graphics and Modelling. 2022. V. 116. P. 108271.
  28. Rabani R., Saidi M.H., Rajabpour A. et al. // Langmuir. 2023. V. 39. P. 15222.
  29. Zhang C., Jia H., Zhang Y., Du S. // J. Phys. Chem. B. 2023. V. 127. P 9543.
  30. Gutiérrez-Varela O., Lombard J., Biben T. et al. // Langmuir. 2023. V. 39.P. 18263.
  31. Wang M., Ni S., Yin Y. et al. // Langmuir. 2024. V. 40. P. 1295.
  32. Darden T., York D., Pedersen L. // J. Chem. Phys. 1993. V. 98. P. 10089.
  33. Jorgensen W.L., Chandrasekhar J., Madura J.D. et al. // J. Chem. Phys. 1983. V. 79. P. 926.
  34. Shankla M., Aksimentiev A. // Nature Communications. 2014. V. 5. P. 5171.
  35. Chen P., Zhang Z., Gu N., Ji M. // Molecular Simulation. 2018. V. 44. P. 85.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Polyelectrolytes P3 and N3 (a), as well as block copolymer NP3 (b) after MD modeling on a neutral spherical gold nanoparticle (the positively charged macrochain or fragment of the block copolymer is shown in red, and the negatively charged macrochain or fragment of the block copolymer is shown in blue). Radial dependences of the average density of polypeptide (b) atoms on the surface of a neutral nanoparticle: the total complex of polypeptides P3 and N3 (1), separate for c polypeptides N3 (2) and P3 (3), NP3 block copolymer (4), as well as negatively (5) and positively (6) charged fragments of the polypeptide NP3.

Baixar (605KB)
3. Fig. 2. Polyelectrolytes P3 and N3 (a, b), block copolymer NP3 (c), and polyelectrolytes P2 and N2 (d) after MD modeling on charged surfaces with surface densities σ+0.1 (a), σ+0.2 (b, d), and σ–0.2 (c) a spherical gold nanoparticle (red shows a positively charged macrochain or fragment of a block copolymer, and blue shows a negatively charged macrochain or fragment of a block copolymer).

Baixar (709KB)
4. 3. Radial dependences of the average atomic density of the complex of polypeptides P3 and N3 (a), as well as the NP1 block copolymer (b) on the surface of a charged spherical metal nanoparticle with different surface charge densities: 0 (1), σ+0.05 (2), σ+0.1 (3), σ–0.1 (4), σ+0.2 (5) and σ–0.2 (6).

Baixar (252KB)
5. Fig. 4. Radial dependences of the average atomic density of the N2 and P2 polyelectrolyte complex on the surface of a spherical metal nanoparticle charged with a surface density of σ–0.2 (1 is the total for all atoms of the polyelectrolyte complex, 2 and 3 are for the atoms of N2 and P2 polyelectrolytes, 4 and 5 are for the atoms of Arg and Asp units).

Baixar (138KB)
6. 5. Radial dependences of the average density of polyelectrolyte atoms N3(1) and P3(2) in their complex, as well as negatively (3) and positively (4) charged fragments of the NP3 block copolymer on the surface of a spherical metal nanoparticle charged with a surface density of σ–0.2.

Baixar (148KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024