Changes in the Structure of Asphaltene Molecules in the Process of Initiated Cracking of Tars

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of a study of asphaltenes isolated from the liquid products of tar cracking performed at a temperature of 500°C in the presence of didodecanoyl peroxide are presented. The reactions rate constants of the thermal transformations of asphaltenes in the studied tars were calculated. It was found that the reaction rate of asphaltene condensation into solid compaction products depends not only on the initial asphaltene content of tars but also on the molecular structure. Changes in the structural group parameters of tar asphaltenes in the course of initiated cracking were established. It was shown that the destruction of structural blocks without changes in their number in the molecular composition is a distinctive feature of asphaltene cracking in the presence of didodecanoyl peroxide. Averaged asphaltene molecules became more compact due to the destruction of aliphatic substituents and naphthenic rings, and the fraction of condensed aromatic structures in their composition increased significantly.

作者简介

A. Goncharov

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: mad111-2011@mail.ru
Tomsk, 634055 Russia

E. Krivtsov

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: john@ipc.tsc.ru
Tomsk, 634055 Russia

参考

  1. Jansen T., Guerry D., Leclerc E., Ropars M., Lacroix M., Geantet C., Tayakout-Fayolle M. // Ind. Eng. Chem. Res. 2014. V. 53. P. 15852. https://doi.org/10.1021/ie502242f
  2. Billups W.E., Verma M., Brinson B.E., Vishnyakova E., Alemany L.B., Shammai M. Energy Fuels. 2019. V. 33. P. 8040. https://doi.org/10.1021/acs.energyfuels.9b01298
  3. Капустин В.М., Глаголева О.Ф. // Нефтехимия. 2016. Т. 56. № 1. С. 3. [Petrol. Chemistry, 2016, vol. 56, no. 1, p. 1. https://doi.org/10.1134/S0965544116010035].https://doi.org/10.7868/S0028242116010032
  4. Akimov A.S., Sviridenko N.N. // J. Pet. Sci. Technol. 2022. V. 40. P. 980. https://doi.org/10.1080/10916466.2021.2008973
  5. Chen L., Meyer J., Campbell T., Canas J., Betancour S.S., Dumont H., Forsythe J.C., Mehay S., Kimball S., Hall D.L., Nighswander J., Peters K.E., Zuo J.Y., Mullins O.C. // Fuel. 2018. V. 221. P. 216. https://doi.org/10.1016/j.fuel.2018.02.065
  6. Alimohammadi S., Zendehboudi S., James L. // Fuel. 2019. V. 252. P. 753. https://doi.org/10.1016/j.fuel.2019.03.016
  7. Кривцов Е.Б., Головко А.К. // Химия в интересах устойчивого развития. 2019. Т. 27. № 1. С. 31. https://doi.org/10.15372/KhUR20190105
  8. Гончаров А.В., Кривцов Е.Б. // ХТТ. 2022. № 2. С. 26. [Solid Fuel Chemistry, 2022, vol. 56, no. 2, p. 108. https://doi.org/10.3103/S0361521922020136].https://doi.org/10.31857/S002311772202013X
  9. Сергиенко С.Р., Таимова Б.А., Талалаев Е.И. Высокомолекулярные неуглеводородные соединения нефти. Смолы и асфальтены. М.: Наука, 1979. 269 с.
  10. Дмитриев Д.Е., Головко А.К. // Нефтехимия. 2010. Т. 50. № 2. С. 118. [Petrol. Chemistry, 2010, vol. 50, no. 2, p. 106. https://doi.org/0.1134/S0965544110020040].

补充文件

附件文件
动作
1. JATS XML
2.

下载 (38KB)

版权所有 © А.В. Гончаров, Е.Б. Кривцов, 2023