Characteristics of High Molecular Components Obtained by Thermal Destruction of Oil Residue Asphaltenes in Supercritical Water

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The composition and characteristics of high-molecular components of the thermolysis products of petroleum residue asphaltenes obtained in supercritical water without/with a catalyst based on iron oxides have been studied. The experiments were carried out in an autoclave at a temperature of 450°C for 60 minutes; the catalyst was prepared in situ from iron (III) tris-acetylacetonate. The use of supercritical water and an in situ catalyst makes it possible to increase the yield of saturated and aromatic hydrocarbons by more than 9.5 times compared to the control experiment (thermolysis without water and a catalyst) and reduce the yield of solid products insoluble in chloroform. The properties of high molecular weight components isolated from thermolysis products were characterized using structural group analysis and IR spectroscopy. High molecular weight components obtained by thermolysis in supercritical water in the presence of a catalyst, in comparison with the products obtained in the control experiment, are characterized by a higher H/C ratio and content of oxygen-containing groups, as well as a lower average molecular weight.

Texto integral

Acesso é fechado

Sobre autores

Kh. Nalgieva

Institute of Petroleum Chemistry, Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: nalgieva.1997@gmail.com
Rússia, Tomsk

M. Kopytov

Institute of Petroleum Chemistry, Siberian Branch of the Russian Academy of Sciences

Email: kma@ipc.tsc.ru
Rússia, Tomsk

Bibliografia

  1. Al-Muntaser A.A., Varfolomeev M.A., Suwaid M.A., Yuan C., Chemodanov A.E., Feoktistov D.A., Rakhmatullin I.Z., Abbas M., Domínguez-Álvarez E., Akhmadiyarov A.A., Klochkov V.V., Amerkhanov M.I. // J. Petroleum Sci. Enng. 2020. V. 184. P. 106592.
  2. Rana M.S., Sámano V., Ancheyta J., Diaz J.A.I. // Fuel. 2007. V. 86. P. 1216.
  3. Castañeda L.C., Muñoz J.A.D., Ancheyta J. // Catal. Today. 2014. V. 220–222. P. 248.
  4. Zhao Y., Wei F. // Fuel Process. Technol. 2008. V. 89. P. 933.
  5. Li N., Yan B., Zhang L., Quan S.X., Hu C., Xiao X.M. // J. Supercrit. Fluids. 2015. V. 97. P. 116.
  6. Zhu S., Jin H., Ou Z., Song M., Chen J., Guo L. // J. Mol. Liq. 2022. V. 355. P. 118965.
  7. Sharan P., Thengane S.K., Yoon T.J., Lewis J.C., Singh R., Currier R.P., Findikoglu A.T. // Desalination. 2022. V. 532. P. 115716.
  8. Hosseinpour M., Soltani M., J. Nathwani J. // J. Clean. Prod. 2022. V. 334. P. 130268.
  9. Arcelus-Arrillaga P., Pinilla J.L., Hellgardt K., Millan M. // Energy and Fuels. 2017. V. 31. P. 4571.
  10. Hosseinpour M., Ahmadi S.J., Fatemi S. // J. Supercrit. Fluids. 2015. V. 100. P. 70.
  11. Hosseinpour M., Fatemi S., Ahmadi S.J. // Fuel. 2015. V. 159. P. 538.
  12. Li N., Zhang X., Zhang Q., Chen L., Ma L., Xiao X. // Fuel. 2020. V. 278. P. 118331.
  13. Hosseinpour M., Ahmadi S.J., Fatemi S. // J. Supercrit. Fluids. 2016. V. 107. P. 278.
  14. Fedyaeva O.N., Shatrova A. V, Vostrikov A.A. // J. Supercrit. Fluids. 2014. V. 95. P. 437.
  15. Kozhevnikov I. V., Nuzhdin A.L., Martyanov O.N. // J. Supercrit. Fluids. 2010. V. 55. P. 217.
  16. Ma Z., Xu D., Guo S., Wang Y., Wang S., Jing Z., Guo Y. // Oxid. Met. 2018. V. 90. P. 599.
  17. Sato T., Adschiri T., Arai K., Rempel G.L., Ng F.T.T. // Fuel. 2003. V. 82. P. 1231.
  18. Cheng Z.-M., Ding Y., Zhao L.-Q., Yuan P.-Q., Yuan W.-K. // Energy Fuels. 2009. V. 23. P. 3187.
  19. Han L., Zhang R., Bi J. // Fuel Processing Technology. 2009. V. 90. P. 292.
  20. Liu Y., Bai F., Zhu C.-C., Yuan P.-Q., Cheng Z.-M., Yuan W.-K. // Fuel Proc. Technology. 2013. V. 106. P. 281.
  21. Morimoto M., Sato S., Takanohashi T. // J. Supercrit. Fluids. 2012. V. 68. P. 113.
  22. Нальгиева Х.В., Копытов М.А. // ХТТ. 2022. № 2. С. 34. https://doi.org/10.31857/S0023117722020074 [Solid Fuel Chemistry, 2022, vol. 56, no. 2, p. 116. https://doi.org/10.3103/S0361521922020070].
  23. Kamyanov V.F, Filimonova T.A., Gorbunova L.V., Lebedev A.K., Sivirilov P.P. // Nauka, Novosibirsk. 1988. P. 177.
  24. Kamyanov V.F., Bolshakov G.F. // Petroleum Chem. 1984. V. 24. P. 450.
  25. Sviridenko N.N., Akimov A.S. // J. Supercrit. Fluids. 2023. V. 192. P. 105784.
  26. Свириденко Н.Н., Кривцов Е.Б., Головко А.К. // Химия и технология топлив и масел. 2016. №3. C. 285. [Chemistry And Technology Of Fuels And Oils, 2016, vol. 52, no.3, p. 285. https://doi.org/10.1007/s10553-016-0705-2].
  27. Туманян Б.П., Петрухина Н.Н., Каюкова Г.П., Нургалиев Д.К., Фосс Л.Е., Романов Г.В. // Успехи химии. 2015. № 6. С. 1145. [Russian Chemical Reviews, 2015, vol. 84, no. 11, p. 1145. https://doi.org/10.1070/RCR4500].
  28. Eletskii P.M., Sosnin G.A., Zaikina O.O., Kukushkin R.G., Yakovlev V. // J. Sib. Fed. Univ. Chem. 2017. V. 10. P. 545.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. SEM images of iron oxide particles

Baixar (272KB)
3. Fig. 2. X-ray diagram of iron oxide particles obtained from iron (III) acetylacetonate after thermolysis

Baixar (119KB)
4. Fig. 3. Iron oxide particles obtained from iron (III) tris-acetylacetonate in PBS medium at T = 450°C: uniformly distributed particles in a volume of water (a); distribution of particles when a magnet is applied (b)

Baixar (111KB)
5. Fig. 4. Composition of asphaltene thermolysis products

Baixar (90KB)
6. Fig. 5. IR spectra of initial and thermolysed asphaltenes

Baixar (278KB)
7. Fig. 6. IR spectra of resins obtained after thermolysis of asphaltenes

Baixar (258KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024