Изменчивость NmF2 на разных долготах средних широт: роль геомагнитной активности

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

На основе данных среднеширотных ионосферных станций на близких исправленных геомагнитных широтах проведен анализ свойств изменчивости концентрации максимума слоя F2 (NmF2) на разных долготах при повышенной (48 > ap(t) > 27) и высокой (ap(t) > 48) геомагнитной активности, где ap(t) – средневзвешенный ap-индекс этой активности. В качестве характеристик этой изменчивости использованы стандартное отклонение s флуктуаций Nm относительно спокойного уровня и средний сдвиг этих флуктуаций xave. Получено, что на всех анализируемых станциях дисперсия s2 для повышенной геомагнитной активности больше, чем для спокойных условий, но почти не отличается от s2 для высокой геомагнитной активности. Для всех анализируемых случаев средний сдвиг xave < 0, и для высокой геомагнитной активности модуль xave больше, чем для повышенной геомагнитной активности. Разница в значениях xave между анализируемыми станциями достаточно большая. Одна из причин этой разницы может быть связана с зависимостью xave от геомагнитных широт. Для выбора этих широт использованы аппроксимации геомагнитного поля наклонным диполем (TD), эксцентричным диполем (ED) или с помощью исправленных геомагнитных (CGM) координат. Получено, что зависимость xave от ED-широты точнее зависимости xave от TD-широты и, тем более, зависимости xave от CGM-широты. Следовательно, ED-широты, а не CGM-широты, являются оптимальными для учета эффектов бурь в концентрации максимума слоя F2 на средних широтах. Этот вывод получен, по-видимому, впервые.

Об авторах

В. X. Депуев

Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН)

Автор, ответственный за переписку.
Email: depuev@izmiran.ru
Россия, Москва, Троицк

М. Г. Деминов

Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН)

Email: depuev@izmiran.ru
Россия, Москва, Троицк

Г. Ф. Деминова

Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН)

Email: depuev@izmiran.ru
Россия, Москва, Троицк

А. Х. Депуева

Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН)

Email: depuev@izmiran.ru
Россия, Москва, Троицк

Список литературы

  1. Аннакулиев С.К., Деминов М.Г., Фельдштейн А.Я., Шубин В.Н. О долготном эффекте в отрицательной фазе ионосферной бури на средних широтах // Геомагнетизм и аэрономия. Т. 37. № 1. С. 75–83. 1997.
  2. Деминов М.Г., Фищук Я.А. Об использовании аппроксимации геомагнитного поля эксцентричным диполем в задачах моделирования ионосферы и плазмосферы // Геомагнетизм и аэрономия. Т. 40. № 3. С. 119–123. 2000.
  3. Деминов М.Г., Деминова Г.Ф., Жеребцов Г.А., Полех Н.М. Свойства изменчивости концентрации максимума F2-слоя над Иркутском при разных уровнях солнечной и геомагнитной активности // Солнечно-земная физика. Т. 1. № 1. С. 56–62. 2015. https://doi.org/10.12737/6558
  4. Деминов М.Г., Деминова Г.Ф., Депуев В.Х., Депуева А.Х. Свойства изменчивости концентрации максимума F2-слоя над Алма-Атой при разных уровнях солнечной и геомагнитной активности // Геомагнетизм и аэрономия. Т. 63. № 5. С. 630–637. 2023. https://doi.org/10.31857/S0016794023600308
  5. Черниговская М.А., Шпынев Б.Г., Хабитуев Д.С., Ратовский К.Г., Белинская А.Ю., Степанов А.Е., Бычков В.В., Григорьева С.А., Панченко В.А., Мелич Й. Исследование отклика среднеширотной ионосферы Северного полушария на магнитные бури в марте 2012 г. // Солнечно-земная физика. Т. 8. № 4. С. 46–56. 2022. https://doi.org/10.12737/szf-84202204
  6. Alken P., Thebault E., Beggan C.D. et al. International geomagnetic reference field: the thirteenth generation // Earth Planets Space. V. 73. № 1. ID 49. 2021. https://doi.org/10.1186/s40623-020-01288-x
  7. Altadill D. Time/altitude electron density variability above Ebro, Spain // Adv. Space Res. V. 39. № 5. P. 962–969. 2007. https://doi.org/10.1016/j.asr.2006.05.031
  8. Araujo-Pradere E.A., Fuller-Rowell T.J., Codrescu M.V. STORM: An empirical storm-time ionospheric correction model: 1. Model description // Radio Sci. V. 37. № 5. ID 1070. 2002. https://doi.org/10.1029/2001RS002467
  9. Araujo-Pradere E.A., Fuller-Rowell T.J., Codrescu M.V., Bilitza D. Characteristics of the ionospheric variability as a function of season, latitude, local time, and geomagnetic activity // Radio Sci. V. 40. № 5. ID RS5009. 2005. https://doi.org/10.1029/2004RS003179
  10. Bilitza D. IRI the international standard for the ionosphere // Adv. Radio Sci. V. 16. P. 1–11. 2018. https://doi.org/10.5194/ars-16-1-2018
  11. Buonsanto M.J. Ionospheric storms: a review // Space Sci. Rev. V. 88. № 3–4. P. 563–601. 1999. https://doi.org/10.1023/A:1005107532631
  12. Chernigovskaya M.A., Shpynev B.G., Yasyukevich A.S. et al. Longitudinal variations of geomagnetic and ionospheric parameters in the Northern Hemisphere during magnetic storms according to multi-instrument observations // Adv. Space Res. V. 67. № 2. P. 762–776. 2021. https://doi.org/10.1016/j.asr.2020.10.028
  13. Danilov A.D., Berbeneva N.A. Statistical analysis of the critical frequency foF2 dependence on various solar activity indices // Adv. Space Res. V. 72. № 6. P. 2351–2361. 2023. https://doi.org/10.1016/j.asr.2023.05.012
  14. Deminov M.G., Deminova G.F., Zherebtsov G.A., Polekh N.M. Statistical properties of variability of the quiet ionosphere F2-layer maximum parameters over Irkutsk under low solar activity // Adv. Space Res. V. 51. № 5. P. 702–711. 2013. https://doi.org/10.1016/j.asr.2012.09.037
  15. Forbes J.M., Palo S.E., Zhang X. Variability of the ionosphere // J. Atmos. Sol.-Terr. Phy. V. 62. № 8. P. 685–693. 2000. https://doi.org/10.1016/S1364-6826(00)00029-8
  16. Fotiadis D.N., Kouris S.S. A functional dependence of foF2 variability on latitude // Adv. Space Res. V. 37. № 5. P. 1023–1028. 2006. https://doi.org/10.1016/j.asr.2005.02.054
  17. Fraser-Smith A.C. Centered and eccentric geomagnetic dipoles and their poles, 1600–1985 // Rev. Geophys. V. 25. № 1. P. 1–16. 1987. https://doi.org/10.1029/RG025i001p00001
  18. Gustafsson G., Papitashvili N.E., Papitashvili V.O. A revised corrected geomagnetic coordinate system for epochs 1985 and 1990 // J. Atmos. Terr. Phys. V. 54. № 11–12. P. 1609–1631. 1992. https://doi.org/10.1016/0021-9169(92)90167-J
  19. Hedin A.E. MSIS-86 thermospheric model // J. Geophys. Res. – Space. V. 92. № 5. P. 4649–4662. 1987. https://doi.org/10.1029/JA092iA05p04649
  20. Jacchia L.G. Thermospheric temperature, density and composition: New models // SAO Special Report. № 375. 1977.
  21. Kilifarska N.A. Longitudinal effects in the ionosphere during geomagnetic storms // Adv. Space Res. V. 8. № 4. P. 23–26. 1988. https://doi.org/10.1016/0273-1177(88)90200-1
  22. Koochak Z., Fraser-Smith A. C. An update on the centered and eccentric geomagnetic dipoles and their poles for the years 1980–2015 // Earth and Space Science. V. 4. P. 626–636. 2017. https://doi.org/10.1002/2017EA000280
  23. Laštovička J., Burešova D. Relationships between foF2 and various solar activity proxies // Space Weather. V. 21. № 4. ID e2022SW003359. 2023. https://doi.org/10.1029/2022SW003359
  24. Lei J., Liu L., Wan W., Zhang S.-R. Variations of electron density based on long-term incoherent scatter radar and ionosonde measurements over Millstone Hill // Radio Sci. V. 40. № 2. ID RS2008 2005. https://doi.org/10.1029/2004RS003106
  25. Liu L., Wan W., Ning B., Pirog O.M., Kurkin V.I. Solar activity variations of the ionospheric peak electron density // J. Geophys. Res. – Space. V. 111. № 8. ID A08304. 2006. https://doi.org/10.1029/2006JA011598
  26. Ma R., Xu J., Wang W., Yuan W. Seasonal and latitudinal differences of the saturation effect between ionospheric NmF2 and solar activity indices // J. Geophys. Res. – Space. V. 114. № 10. ID A10303. 2009. https://doi.org/10.1029/2009JA014353
  27. Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues // J. Geophys. Res. – Space. V. 107. № 12. ID 1468. 2002. https://doi.org/10.1029/2002JA009430
  28. Pirog O., Deminov M., Deminova G., Zherebtsov G., Polekh N. Peculiarities of the nighttime winter foF2 increase over Irkutsk // Adv. Space Res. V. 47. № 6. P. 921–929. 2011. https://doi.org/10.1016/j.asr.2010.11.015
  29. Ratovsky K.G., Medvedev A.V., Tolstikov M.V. Diurnal, seasonal and solar activity pattern of ionospheric variability from Irkutsk Digisonde data // Adv. Space Res. V. 55. № 8. P. 2041–2047. 2015. https://doi.org/10.1016/j.asr.2014.08.001
  30. Ratovsky K.G., Medvedeva I.V. Local empirical model of ionospheric variability // Adv. Space Res. V. 71. № 5. P. 2299–2306. 2023. https://doi.org/10.1016/j.asr.2022.10.065
  31. Richards P.G., Fennelly J.A., Torr D.G. EUVAC: A solar EUV flux model for aeronomic calculations // J. Geophys. Res. – Space. V. 99. № 5. P. 8981–8992. 1994. https://doi.org/10.1029/94JA00518
  32. Richards P.G., Woods T.N., Peterson W.K. HEUVAC: A new high resolution solar EUV proxy model //Adv. Space Res. V. 37. № 2. P. 315–322. 2006. https://doi.org/10.1016/j.asr.2005.06.031
  33. Rishbeth H., Mendillo M. Patterns of F2-layer variability // J. Atmos. Sol.-Terr. Phy. V. 63. № 15. P. 1661–1680. 2001. https://doi.org/10.1016/S1364-6826(01)00036-0
  34. Shpynev B.G., Zolotukhina N.A., Polekh N.M. et al. The ionosphere response to severe geomagnetic storm in March 2015 on the base of the data from Eurasian high-middle latitudes ionosonde chain // J. Atmos. Sol.-Terr. Phy. V. 180. P. 93–105. 2018. https://doi.org/10.1016/j.jastp.2017.10.014
  35. Taylor J.R. An introduction to error analysis. Mill Valley, CA: Univer. Sci. Books, 270 p. 1982.
  36. Wrenn G.L. Time-weighted accumulations ap(t) and Kp(t) // J. Geophys. Res. – Space. V. 92. № 9. P. 10125–10129. 1987. https://doi.org/10.1029/JA092iA09p10125
  37. Wrenn G.L., Rodger A.S. Geomagnetic modification of the mid-latitude ionosphere - Toward a strategy for the improved forecasting of foF2 // Radio Sci. V. 24. № 1. P. 99–111. 1989. https://doi.org/10.1029/RS024i001p00099
  38. Zhang S.-R., Holt J.M. Ionospheric climatology and variability from long-term and multiple incoherent scatter radar observations: variability // Ann. Geophys. V. 26. № 6. P. 1525–1537. 2008. https://doi.org/10.5194/angeo-26-1525-2008

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024