NBS-LRR Resistance Genes Variability in Durum Wheat Cultivars Inferred from NBS-Profiling

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

One of the most important trends in the development of new durum wheat cultivars is resistance to diseases and pests, causing significant yield losses. The most common class of plant resistance genes is NBS-LRR genes; for the analysis of variability of these genes the NBS-profiling method is effectively used. In the present work, this method was used for the first time to study domestic durum wheat cultivars and to compare them with foreign cultivars. The detected NBS-LRR resistance genes polymorphism was rather high (64.04%): 62.12% for 54 Russian cultivars and 36.33% for 21 foreign cultivars. Unique NBS-fragments were identified in four spring and three winter cultivars. NBS-profiling data analysis revealed differentiation of Russian and foreign durum wheat cultivars, both spring and winter, which indicates differences in their sets of resistance genes. At the same time, no division by pedigrees and breeding centers was revealed among Russian cultivars.

Авторлар туралы

A. Trifonova

Vavilov Institute of General Genetics Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: aichka89@mail.ru
Moscow, 119991 Russia

L. Dedova

Vavilov Institute of General Genetics Russian Academy of Sciences

Email: aichka89@mail.ru
Moscow, 119991 Russia

K. Boris

Vavilov Institute of General Genetics Russian Academy of Sciences

Email: aichka89@mail.ru
Moscow, 119991 Russia

P. Malchikov

Samara Scientific Research Agriculture Institute named after N.M. Tulajkov – Samara Federal Research Scientific Center of the RAS

Email: aichka89@mail.ru
Samara region, Bezenchuk, 446254 Russia

A. Kudryavtsev

Vavilov Institute of General Genetics Russian Academy of Sciences

Email: aichka89@mail.ru
Moscow, 119991 Russia

Әдебиет тізімі

  1. De Vita P., Taranto F. Durum wheat (Triticum turgidum ssp. durum) breeding to meet the challenge of climate change // Advances in Plant Breeding Strategies: Cereals. V. 5. Cham: Springer, 2019. P. 471–524.
  2. Natoli V., Malchikov P., De Vita P. et al. Genetic improvement for gluten strength in Russian spring durum wheat genotypes // Comprehensible Science: ICCS 2020. V. 186. Cham: Springer, 2021. P. 301–312. https://doi.org/10.1007/978-3-030-66093-2_29
  3. Chai Y., Pardey P.G., Hurley T.M. et al. A probabilistic bio-economic assessment of the global consequences of wheat leaf rust // Phytopathology. 2020. V. 110. P. 1886–1896. https://doi.org/10.1094/PHYTO-02-20-0032-R
  4. Maccaferri M., Harris N.S., Twardziok S.O. et al. Durum wheat genome highlights past domestication signatures and future improvement targets // Nat. Genetics. 2019. V. 51. № 5. P. 885–895. https://doi.org/10.1038/s41588-019-0381-3
  5. Zou S., Xu Y., Li Q. et al. Wheat powdery mildew resistance: from gene identification to immunity deployment // Front. in Plant Science. 2023. V. 14. https://doi.org/10.3389/fpls.2023.1269498
  6. Van der Linden C.G., Wouters D.C., Mihalka V. et al. Efficient targeting of plant disease resistance loci using NBS profiling // Theor. and Applied Genetics. 2004. V. 109. № 2. P. 384–393. https://doi.org/10.1007/s00122-004-1642-8
  7. Mantovani P., Van der Linden G., Maccaferri M. et al. Nucleotide-binding site (NBS) profiling of genetic diversity in durum wheat // Genome. 2006. V. 49. № 11. P. 1473–1480. https://doi.org/10.1139/g06-100
  8. Gennaro A., Koebner R.M., Ceoloni C. A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat // Functional & Integrative Genomics. 2009. V. 9. P. 325–334. https://doi.org/10.1007/s10142-009-0115-1
  9. Tufan H.A., Göcmen Taskin B., Maccormack R. et al. The utility of NBS-profiling for characterization of yellow rust resistance in an F6 durum wheat population // J. Genetics. 2019. V. 98. P. 1–12. https://doi.org/10.1007/s12041-019-1143-9
  10. Sanz M.J., Loarce Y., Fominaya A. et al. Identification of RFLP and NBS/PK profiling markers for disease resistance loci in genetic maps of oats // Theor. and Applied Genetics. 2013. V. 126. P. 203–218. https://doi.org/10.1007/s00122-012-1974-8
  11. Brugmans B., Wouters D., van Os H. et al. Genetic mapping and transcription analyses of resistance gene loci in potato using NBS profiling // Theor. and Applied Genetics. 2008. V. 117. № 8. P. 1379–1388. https://doi.org/10.1007/s00122-008-0871-7.
  12. Дьяченко Е.А., Кулакова А.В., Кочиева Е.З. и др. Вариабельность геномных RGA-локусов современных отечественных сортов картофеля: данные NBS-маркирования // С.-хоз. биология. 2021. Т. 56. № 1. С. 32–43. https://doi.org/10.15389/agrobiology.2021.1.32rus
  13. Трифонова А.А., Шлявас А.В., Дедова Л.В. и др. Генетическое разнообразие сортов яблони народной селекции (Malus × domestica Borkh.) Поволжья из коллекции ВИР по данным NBS-профайлинга // Генетика. 2021. Т. 57. № 6. С. 661–673. https://doi.org/10.31857/S0016675821060114
  14. Трифонова А.А., Парадня Е.Р., Борис К.В., Кудрявцев А.М. Полиморфизм NBS-LRR генов устойчивости гибридов сахарной свеклы по данным NBS-профайлинга // Генетика. 2022. Т. 58. № 2. С. 239–244. https://doi.org/10.31857/S0016675822010118
  15. Benbouza H., Jacquemin J.M., Baudoin J.P., Mergeai G. Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels // BASE. 2006. V. 10. № 2. P. 77–81.
  16. Peakall R., Smouse P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research – an update // Bioinformatics. 2012. V. 28. P. 2537–2539.
  17. Hammer O., Harper D.A.T., Ryan P.D. PAST: Paleontological Statistics software package for education and data analysis // Paleontologia Electronica. 2001. V. 4. № 1. P. 1–9.
  18. Tamura K., Stecher G., Kumar S. MEGA 11: Molecular Evolutionary Genetics Analysis version 11 // Mol. Biology and Evolution. 2021. V. 38. № 7. P. 3022–3027. https://doi.org/10.1093/molbev/msab120
  19. Sayar-Turet M., Dreisigacker S., Braun H.J. et al. Genetic variation within and between winter wheat geno- types from Turkey, Kazakhstan, and Europe as determined by nucleotide-binding-site profiling // Genome. 2011. V. 54. № 5. P. 419–430. https://doi.org/10.1139/g11-008
  20. Figliuolo G., Mazzeo M., Greco I. Temporal variation of diversity in Italian durum wheat germplasm // Genet. Res. and Crop Evolution. 2007. V. 54. P. 615–626. https://doi.org/10.1007/s10722-006-0019-z
  21. Moragues M., Moralejo M., Sorrells M.E., Royo C. Dispersal of durum wheat [Triticum turgidum L. ssp. turgidum convar. durum (Desf.) MacKey] landraces across the Mediterranean basin assessed by AFLPs and microsatellites // Genet. Res. and Crop Evolution. 2007. V. 54. P. 1133–1144. https://doi.org/10.1007/s10722-006-9005-8
  22. Marzario S., Logozzo G., David J.L. et al. Molecular genotyping (SSR) and agronomic phenotyping for utilization of durum wheat (Triticum durum Desf.) ex situ collection from Southern Italy: A combined approach including pedigreed varieties // Genes. 2018. V. 9. № 10. P. 465. https://doi.org/10.3390/genes9100465
  23. Robbana C., Kehel Z., Ben Naceur M.B. et al. Genome-wide genetic diversity and population structure of Tunisian durum wheat landraces based on DArTseq technology // Intern. J. Mol. Sciences. 2019. V. 20. № 6. P. 1352. https://doi.org/10.3390/ijms20061352
  24. Mazzucotelli E., Sciara G., Mastrangelo A.M. et al. The global durum wheat panel (GDP): An international platform to identify and exchange beneficial alleles // Frontiers in Plant Science. 2020. V. 11. https://doi.org/10.3389/fpls.2020.569905
  25. Кудрявцев А.М., Дедова Л.В., Мельник В.А. и др. Генетическое разнообразие современных российских сортов яровой и озимой твердой пшеницы по глиадинкодирующим локусам // Генетика. 2014. Т. 50. № 5. С. 554–559. https://doi.org/10.7868/S0016675814050099
  26. Щипак Г.В., Недоступов Р.А., Щипак В.Г. Селекция озимой твердой пшеницы на повышение адаптивного потенциала и урожайность // Вавил. журн. генетики и селекции. 2012. Т. 16. № 2. С. 455–463.
  27. Юсов В.С. Создание и селекционно-генетическая оценка исходного материала яровой твердой пшеницы для селекции в условиях Западной Сибири: Дис. докт. с.-хоз. наук. Красноярск: Красноярский гос. аграрный ун-т, 2024. 439 с.
  28. Melnikova N.V., Ganeva G.D., Popova Z.G. et al. Gliadins of Bulgarian durum wheat (Triticum durum Desf.) landraces: Genetic diversity and geographical distribution // Genet. Res. and Crop Evolution. 2010. V. 57. P. 587–595. https://doi.org/10.1007/s10722-009-9497-0
  29. Haugrud P., Achilli A.R., Martínez-Peña R., Klymiuk V. Future of durum wheat research and breeding: Insights from early career researchers // The Plant Genome. 2024. P. e20453. https://doi.org/10.1002/tpg2.20453
  30. Мальчиков П.Н., Мясникова М.Г. Развитие селекции яровой твердой пшеницы в России (странах бывшего СССР), результаты и перспективы // Вавил. журн. генетики и селекции. 2023. Т. 27. № 6. С. 591–608. https://doi.org/10.18699/VJGB-23-71
  31. Мальчиков П.Н., Мясникова М.Г., Леонова И.Н., Салина Е.А. Итрогрессия устойчивости к мучнистой росе (Blumeria graminis DC. f. tritici) от Triticum timopheevii Zhuk. и Triticum dicoccum Shuebl. в геном Triticum durum Desf. // Зерновое хозяйство России. 2015. № 2. С. 63–67.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025