Dynamics of Structural Changes in the MSTN and MyoD1 Genes in Manych Merino Sheep
- 作者: Krivoruchko A.Y.1,2, Safaryan E.Y.1,2, Skorykh L.N.1,2, Skokova A.V.1, Krivoruchko O.N.1, Zuev R.V.2
-
隶属关系:
- North Caucasus Federal Agrarian Research Centre
- North Caucasus Federal University
- 期: 卷 61, 编号 3 (2025)
- 页面: 53-64
- 栏目: ГЕНЕТИКА ЖИВОТНЫХ
- URL: https://ter-arkhiv.ru/0016-6758/article/view/679421
- DOI: https://doi.org/10.31857/S0016675825030062
- EDN: https://elibrary.ru/ULHQBK
- ID: 679421
如何引用文章
详细
The paper presents changes in the structure of two genes, MSTN and MyoD1, whose functions are associated with the development of muscle tissue in animals. The aim of this study is to investigate changes in the structure of the MSTN and MyoD1 genes in the Manych Merino sheep population over ten years based on the results of whole-genome sequencing of DNA samples. The object of the study in 2024 was Manych Merino rams. Sequencing was carried out using a NovaSeq 6000 genomic sequencer (Illumina, Inc. USA). The fragments obtained as a result of sequencing were mapped to the reference genome of Ovis aries assembly ARS-UI_Ramb_v2.0 (National Center for Biotechnology Information (NCBI). Genome. Ovis aries. In the genes MSTN, MyoD1, 14 and 16 single nucleotide substitutions were identified, respectively. The results show that both genes have many variations, which can affect the phenotypic characteristics of sheep. General clustering showed that there are genotypes that were not detected in 2024, and a new genotype (B4) was also identified. The sources of genotypes B1, B2, B3 are genotypes A1, A4, A6, A7, A8. The frequency of mutant alleles in the MSTN and MyoD1 genes in sheep over the past ten years has shown some changes. In the substitutions rs119102828 and rs423466211 of the MSTN gene, the frequency mutant alleles were 22% lower, and in the rs408710650 substitution 18% less, compared to previous studies. In the MyoD1 gene, mutant alleles in the rs412308724 and rs403138072 substitutions were less common by 20 and 25%, respectively. In the rs416501217 substitution, the frequency of the mutant allele increased by 63% compared to previous studies. The detected changes in the frequency of mutant alleles and clustering of genotypes over the past ten years demonstrate the variability of genetic diversity. This emphasizes the need to continue monitoring genotypes to develop genetic certification programs and marker-associated selection.
关键词
全文:

作者简介
A. Krivoruchko
North Caucasus Federal Agrarian Research Centre; North Caucasus Federal University
编辑信件的主要联系方式.
Email: telegina.helen@yandex.ru
俄罗斯联邦, Mikhaylovsk, 356241; Stavropol, 355017
E. Safaryan
North Caucasus Federal Agrarian Research Centre; North Caucasus Federal University
Email: telegina.helen@yandex.ru
俄罗斯联邦, Mikhaylovsk, 356241; Stavropol, 355017
L. Skorykh
North Caucasus Federal Agrarian Research Centre; North Caucasus Federal University
Email: telegina.helen@yandex.ru
俄罗斯联邦, Mikhaylovsk, 356241; Stavropol, 355017
A. Skokova
North Caucasus Federal Agrarian Research Centre
Email: telegina.helen@yandex.ru
俄罗斯联邦, Mikhaylovsk, 356241
O. Krivoruchko
North Caucasus Federal Agrarian Research Centre
Email: telegina.helen@yandex.ru
俄罗斯联邦, Mikhaylovsk, 356241
R. Zuev
North Caucasus Federal University
Email: telegina.helen@yandex.ru
俄罗斯联邦, Stavropol, 355017
参考
- Salisu I.B., Olawale A.S., Jabbar B. et al. Molecular markers and their рotentials in аnimal breeding and genetics // Nigerian J. Anim. Sci. 2018. V. 20. № 3. P. 29–48.
- Kostusiak P., Slósarz J., Gołębiewski M. et al. Polymorphism of genes and their impact on beef quality // Curr. Issues. Mol. Biol. 2023. V. 45. P. 4749–4762. https://doi.org/10.3390/cimb45060302
- Zhang X., Ran J., Lian T. et al. The single nucleotide polymorphisms of myostatin gene and theirassociations with growth and carcass traits in Daheng broiler // Brazil. J. Poultry Sci. 2019. V. 21. № 3. https://doi.org/10.1590/1806-9061-2018-0808
- Lyu P., Settlage R.E., Jiang H. Genome-wide identification of enhancers and transcription factors regulating the myogenic differentiation of bovine satellite cells // BMC Genome. 2021. V. 22. P. 901–916. https://doi.org/10.1186/s12864-021-08224-7
- Prihandini P.W., Hariyono D.N., Tribudi Y.A. Myostatin gene as a genetic marker for growth and carcass traits in beef cattle // Indones. Bull. Anim. Vet. Sci. 2021. V. 31. № 1. P. 37–42. https://doi.org/10.14334/wartazoa.v31i1.2530
- Grochowska E., Borys B., Mroczkowski S. Effects of intronic SNPs in the myostatin gene on growth and carcass traits in colored Polish merino sheep // Genes Basel. 2019. V. 11. № 2. P. 20–38. https://doi.org/10.3390/genes11010002
- Ozcan-Gokçek E., Isık R., Karahan B. et al. Characterisation of single nucleotide polymorphisms and haplotypes of MSTN associated with growth traits in European Sea Bass (Dicentrarchus labrax) // Mar. Biotechnol. 2023. V. 25. № 1. P. 347–357. https://doi.org/10.1007/s10126-023-10211-w
- Du C., Zhou X., Zhang K. et al. Inactivation of the MSTN gene expression changes the composition and function of the gut microbiome in sheep // BMC Microbiology. 2022. V. 22. № 1. P. 273–284. https://doi.org/10.1186/s12866-022-02687-8
- Kowalczyk M., Kaliniak-Dziura A., Prasow M. et al. Meat quality-genetic background and methods of its analysis // Czech J. Food Sci. 2022. V. 40. P. 15–25. https://doi.org/10.17221/255/2020-CJFS
- Migdal L., Palka S. Polymorphisms in coding and non-coding regions of rabbit (Oryctolagus cuniculus) myogenin (MyoG) gene // World Rabbit Sci. 2021. V. 29. № 2. P. 69–76. https://doi.org/10.4995/wrs.2021.11830
- Dong X., Can H., Mao H. et al. Association of MyoD1 gene polymorphisms with meat quality traits in domestic pigeons (Columba livia) // J. Poult. Sci. 2019. V. 56. № 1. P. 20–26. https://doi.org/10.2141/jpsa.0170182
- Paim T., Ianella P., Paiva S. et al. Detection and evaluation of selection signatures in sheep // Pesq. Agropec. Bras. 2018. V. 53. P. 527–539. https://doi.org/10.1590/s0100-204x2018000500001
- Марченко В.В. Создание новых линий в породе овец “ Манычский меринос” // Ветеринария, зоотехния и биотехнология. 2017. № 6. С. 81–84.
- Телегина Е.Ю. Секвенирование гена MyoD1 у овец породы манычский меринос и оценка влияния аллелей на продуктивные показатели // Вестник Курской гос. с.-хоз. академии. 2018. № 1. С. 40–44. https://www.elibrary.ru/download/elibrary_32765036_60319802.pdf
- Яцык О.А., Телегина Е.Ю. Полиморфизм гена миостатина (MSTN) у овец породы манычский меринос // Аграрный вестник Верхневолжья. 2017. № 3. С. 47–53.
- Trukhachev V., Yatsyk O., Telegina E. et al. Comparison of the myostatin (MSTN) gene in Russian Stavropol Merino sheep and New Zealand Merino sheep // Small Ruminant Res. 2018. V. 160. P. 103–106. https://doi.org/10.1016/j.smallrumres.2018.01.005
- Trukhachev V., Skripkin V., Telegina E. et al. Associations between newly discovered polymorphisms of the MyoD1 gene and body parameters in Stavropol breed rams // Bulgar. J. Veterinary Med. 2018. V. 21. № 1. P. 28–39. https://doi.org/10.15547/bjvm.1069
- Яцык О.А. Сравнение мясной продуктивности мериносовых овец // Фермер. Черноземье. 2018. Т. 7. № 16. С. 50–53.
- Trukhachev V., Dzhailidy G., Skripkin V. et al. The polymorphisms of MyoD1 gene in Manych Merino sheep and itsinfl uence on body conformation traits // Hellenic Vet. Med. Soc. 2017. V. 68. № 3. Р. 319–326. https://doi.org/10.12681/jhvms.15476
- Sahu A., Jeichitra V., Rajendran R. et al. Polymorphism in exon 3 of myostatin (MSTN) gene and its association with growth traits in Indian sheep breeds // Small Rumin. Res. 2017. V. 149. P. 81–84. https://doi.org/10.1016/j.smallrumres.2017.01.009
- Han J., Zhou H., Forrest R. et al. Effect of myostatin (MSTN) g+6223G> A on production and carcass traits in New Zealand Romney sheep // Asian-Austral. J. Anim. Sci. 2020. V. 23. № 7. P. 863–866. https://doi.org/10.5713/ajas.2010.90392.
- Kolenda M., Grochowska E., Milewski S. et al. The association between the polymorphism in the myostatin gene and growth traits in Kamieniec and Pomeranian sheep breeds // Small Rumin. Res. 2019. V. 177. P. 29–35. https://doi. org/10.1016/j.smallrumres.2019.06.007
- Chacko Kaitholil S., Mooney M., Aubry A. et al. Insights into the influence of diet and genetics on feed efficiency and meat production in sheep // Anim. Genet. 2024. V. 55. № 1. P. 20–46. https://doi.org/10.1111/age.13383
- Thepa T., Tyasi T. A systematic review of myostatin gene variations and their association with growth traits in sheep // Adv. Anim. Vet. Sci. 2024. V. 12. № 6. P. 1199–1205. https://doi.org/10.17582/journal.aavs/2024/12.6.1199.1205
- Sahu A., Jeichitra V., Rajendran R. et al. Polymorphism in exon 3 of myostatin (MSTN) gene and its association with growth traits in Indian sheep breeds // Small Rumin. Res. 2017. V. 149. P. 81–84. https://doi.org/10.1016/j.smallrumres.2017.01.009
- Sousa-Junior B., Meira N., Azevedo C. et al. Variants in myostatin and MyoD1 family genes are associated with meat quality traits in Santa Ines sheep // Anim. Biotechnology. 2022. № 33. P. 201–213. https://doi.org/10.1080/10495398.2020.1781651
- Mao H., Wang M., Ke Z. et al. Association of variants and expression levels of MYOD1 gene with carcass and muscle characteristic traits in domestic pigeons // Anim. Biotechnology. 2023. V. 34. P. 4927–4937. https://doi.org/10.1080/10495398.2023.2213263
- Bhuiyan M., Kim N., Cho Y. et al. Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle // Livest. Sci. 2019. V. 126. P. 292–297. https://doi.org/10.1016/j.livsci.2019.05.019
- Clark E., Bush S., McCulloch M. et al. A high-resolution atlas of gene expression in the domestic sheep (Ovis aries) // PLOS. Genet. 2017. V. 13. № 9. https://doi.org/10.1371/journal.pgen.1006997
补充文件
