Dynamics of Structural Changes in the MSTN and MyoD1 Genes in Manych Merino Sheep

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper presents changes in the structure of two genes, MSTN and MyoD1, whose functions are associated with the development of muscle tissue in animals. The aim of this study is to investigate changes in the structure of the MSTN and MyoD1 genes in the Manych Merino sheep population over ten years based on the results of whole-genome sequencing of DNA samples. The object of the study in 2024 was Manych Merino rams. Sequencing was carried out using a NovaSeq 6000 genomic sequencer (Illumina, Inc. USA). The fragments obtained as a result of sequencing were mapped to the reference genome of Ovis aries assembly ARS-UI_Ramb_v2.0 (National Center for Biotechnology Information (NCBI). Genome. Ovis aries. In the genes MSTN, MyoD1, 14 and 16 single nucleotide substitutions were identified, respectively. The results show that both genes have many variations, which can affect the phenotypic characteristics of sheep. General clustering showed that there are genotypes that were not detected in 2024, and a new genotype (B4) was also identified. The sources of genotypes B1, B2, B3 are genotypes A1, A4, A6, A7, A8. The frequency of mutant alleles in the MSTN and MyoD1 genes in sheep over the past ten years has shown some changes. In the substitutions rs119102828 and rs423466211 of the MSTN gene, the frequency mutant alleles were 22% lower, and in the rs408710650 substitution 18% less, compared to previous studies. In the MyoD1 gene, mutant alleles in the rs412308724 and rs403138072 substitutions were less common by 20 and 25%, respectively. In the rs416501217 substitution, the frequency of the mutant allele increased by 63% compared to previous studies. The detected changes in the frequency of mutant alleles and clustering of genotypes over the past ten years demonstrate the variability of genetic diversity. This emphasizes the need to continue monitoring genotypes to develop genetic certification programs and marker-associated selection.

全文:

受限制的访问

作者简介

A. Krivoruchko

North Caucasus Federal Agrarian Research Centre; North Caucasus Federal University

编辑信件的主要联系方式.
Email: telegina.helen@yandex.ru
俄罗斯联邦, Mikhaylovsk, 356241; Stavropol, 355017

E. Safaryan

North Caucasus Federal Agrarian Research Centre; North Caucasus Federal University

Email: telegina.helen@yandex.ru
俄罗斯联邦, Mikhaylovsk, 356241; Stavropol, 355017

L. Skorykh

North Caucasus Federal Agrarian Research Centre; North Caucasus Federal University

Email: telegina.helen@yandex.ru
俄罗斯联邦, Mikhaylovsk, 356241; Stavropol, 355017

A. Skokova

North Caucasus Federal Agrarian Research Centre

Email: telegina.helen@yandex.ru
俄罗斯联邦, Mikhaylovsk, 356241

O. Krivoruchko

North Caucasus Federal Agrarian Research Centre

Email: telegina.helen@yandex.ru
俄罗斯联邦, Mikhaylovsk, 356241

R. Zuev

North Caucasus Federal University

Email: telegina.helen@yandex.ru
俄罗斯联邦, Stavropol, 355017

参考

  1. Salisu I.B., Olawale A.S., Jabbar B. et al. Molecular markers and their рotentials in аnimal breeding and genetics // Nigerian J. Anim. Sci. 2018. V. 20. № 3. P. 29–48.
  2. Kostusiak P., Slósarz J., Gołębiewski M. et al. Polymorphism of genes and their impact on beef quality // Curr. Issues. Mol. Biol. 2023. V. 45. P. 4749–4762. https://doi.org/10.3390/cimb45060302
  3. Zhang X., Ran J., Lian T. et al. The single nucleotide polymorphisms of myostatin gene and theirassociations with growth and carcass traits in Daheng broiler // Brazil. J. Poultry Sci. 2019. V. 21. № 3. https://doi.org/10.1590/1806-9061-2018-0808
  4. Lyu P., Settlage R.E., Jiang H. Genome-wide identification of enhancers and transcription factors regulating the myogenic differentiation of bovine satellite cells // BMC Genome. 2021. V. 22. P. 901–916. https://doi.org/10.1186/s12864-021-08224-7
  5. Prihandini P.W., Hariyono D.N., Tribudi Y.A. Myostatin gene as a genetic marker for growth and carcass traits in beef cattle // Indones. Bull. Anim. Vet. Sci. 2021. V. 31. № 1. P. 37–42. https://doi.org/10.14334/wartazoa.v31i1.2530
  6. Grochowska E., Borys B., Mroczkowski S. Effects of intronic SNPs in the myostatin gene on growth and carcass traits in colored Polish merino sheep // Genes Basel. 2019. V. 11. № 2. P. 20–38. https://doi.org/10.3390/genes11010002
  7. Ozcan-Gokçek E., Isık R., Karahan B. et al. Characterisation of single nucleotide polymorphisms and haplotypes of MSTN associated with growth traits in European Sea Bass (Dicentrarchus labrax) // Mar. Biotechnol. 2023. V. 25. № 1. P. 347–357. https://doi.org/10.1007/s10126-023-10211-w
  8. Du C., Zhou X., Zhang K. et al. Inactivation of the MSTN gene expression changes the composition and function of the gut microbiome in sheep // BMC Microbiology. 2022. V. 22. № 1. P. 273–284. https://doi.org/10.1186/s12866-022-02687-8
  9. Kowalczyk M., Kaliniak-Dziura A., Prasow M. et al. Meat quality-genetic background and methods of its analysis // Czech J. Food Sci. 2022. V. 40. P. 15–25. https://doi.org/10.17221/255/2020-CJFS
  10. Migdal L., Palka S. Polymorphisms in coding and non-coding regions of rabbit (Oryctolagus cuniculus) myogenin (MyoG) gene // World Rabbit Sci. 2021. V. 29. № 2. P. 69–76. https://doi.org/10.4995/wrs.2021.11830
  11. Dong X., Can H., Mao H. et al. Association of MyoD1 gene polymorphisms with meat quality traits in domestic pigeons (Columba livia) // J. Poult. Sci. 2019. V. 56. № 1. P. 20–26. https://doi.org/10.2141/jpsa.0170182
  12. Paim T., Ianella P., Paiva S. et al. Detection and evaluation of selection signatures in sheep // Pesq. Agropec. Bras. 2018. V. 53. P. 527–539. https://doi.org/10.1590/s0100-204x2018000500001
  13. Марченко В.В. Создание новых линий в породе овец “ Манычский меринос” // Ветеринария, зоотехния и биотехнология. 2017. № 6. С. 81–84.
  14. Телегина Е.Ю. Секвенирование гена MyoD1 у овец породы манычский меринос и оценка влияния аллелей на продуктивные показатели // Вестник Курской гос. с.-хоз. академии. 2018. № 1. С. 40–44. https://www.elibrary.ru/download/elibrary_32765036_60319802.pdf
  15. Яцык О.А., Телегина Е.Ю. Полиморфизм гена миостатина (MSTN) у овец породы манычский меринос // Аграрный вестник Верхневолжья. 2017. № 3. С. 47–53.
  16. Trukhachev V., Yatsyk O., Telegina E. et al. Comparison of the myostatin (MSTN) gene in Russian Stavropol Merino sheep and New Zealand Merino sheep // Small Ruminant Res. 2018. V. 160. P. 103–106. https://doi.org/10.1016/j.smallrumres.2018.01.005
  17. Trukhachev V., Skripkin V., Telegina E. et al. Associations between newly discovered polymorphisms of the MyoD1 gene and body parameters in Stavropol breed rams // Bulgar. J. Veterinary Med. 2018. V. 21. № 1. P. 28–39. https://doi.org/10.15547/bjvm.1069
  18. Яцык О.А. Сравнение мясной продуктивности мериносовых овец // Фермер. Черноземье. 2018. Т. 7. № 16. С. 50–53.
  19. Trukhachev V., Dzhailidy G., Skripkin V. et al. The polymorphisms of MyoD1 gene in Manych Merino sheep and itsinfl uence on body conformation traits // Hellenic Vet. Med. Soc. 2017. V. 68. № 3. Р. 319–326. https://doi.org/10.12681/jhvms.15476
  20. Sahu A., Jeichitra V., Rajendran R. et al. Polymorphism in exon 3 of myostatin (MSTN) gene and its association with growth traits in Indian sheep breeds // Small Rumin. Res. 2017. V. 149. P. 81–84. https://doi.org/10.1016/j.smallrumres.2017.01.009
  21. Han J., Zhou H., Forrest R. et al. Effect of myostatin (MSTN) g+6223G> A on production and carcass traits in New Zealand Romney sheep // Asian-Austral. J. Anim. Sci. 2020. V. 23. № 7. P. 863–866. https://doi.org/10.5713/ajas.2010.90392.
  22. Kolenda M., Grochowska E., Milewski S. et al. The association between the polymorphism in the myostatin gene and growth traits in Kamieniec and Pomeranian sheep breeds // Small Rumin. Res. 2019. V. 177. P. 29–35. https://doi. org/10.1016/j.smallrumres.2019.06.007
  23. Chacko Kaitholil S., Mooney M., Aubry A. et al. Insights into the influence of diet and genetics on feed efficiency and meat production in sheep // Anim. Genet. 2024. V. 55. № 1. P. 20–46. https://doi.org/10.1111/age.13383
  24. Thepa T., Tyasi T. A systematic review of myostatin gene variations and their association with growth traits in sheep // Adv. Anim. Vet. Sci. 2024. V. 12. № 6. P. 1199–1205. https://doi.org/10.17582/journal.aavs/2024/12.6.1199.1205
  25. Sahu A., Jeichitra V., Rajendran R. et al. Polymorphism in exon 3 of myostatin (MSTN) gene and its association with growth traits in Indian sheep breeds // Small Rumin. Res. 2017. V. 149. P. 81–84. https://doi.org/10.1016/j.smallrumres.2017.01.009
  26. Sousa-Junior B., Meira N., Azevedo C. et al. Variants in myostatin and MyoD1 family genes are associated with meat quality traits in Santa Ines sheep // Anim. Biotechnology. 2022. № 33. P. 201–213. https://doi.org/10.1080/10495398.2020.1781651
  27. Mao H., Wang M., Ke Z. et al. Association of variants and expression levels of MYOD1 gene with carcass and muscle characteristic traits in domestic pigeons // Anim. Biotechnology. 2023. V. 34. P. 4927–4937. https://doi.org/10.1080/10495398.2023.2213263
  28. Bhuiyan M., Kim N., Cho Y. et al. Identification of SNPs in MYOD gene family and their associations with carcass traits in cattle // Livest. Sci. 2019. V. 126. P. 292–297. https://doi.org/10.1016/j.livsci.2019.05.019
  29. Clark E., Bush S., McCulloch M. et al. A high-resolution atlas of gene expression in the domestic sheep (Ovis aries) // PLOS. Genet. 2017. V. 13. № 9. https://doi.org/10.1371/journal.pgen.1006997

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Genotype variants of MSTN and MyoD1 genes in Manych Merino sheep with different alleles identified in 2014. Homozygous variant of the mutant allele is highlighted in dark green colour, heterozygous variant - in green colour, homozygous variant of the common type allele - in light green colour.

下载 (339KB)
3. Fig. 2. Genotype variants of MSTN and MyoD1 genes in sheep of the Manych Merino breed with different alleles identified in 2024. Homozygous variant of the mutant allele is highlighted in dark green colour, heterozygous variant - in green colour, homozygous variant of the common type allele - in light green colour.

下载 (304KB)
4. Fig. 3. Clustering of MSTN and MyoD1 genes by genotype. The homozygous variant of the mutant allele is highlighted in dark green, the heterozygous variant in green, and the homozygous variant of the common type allele in light green.

下载 (428KB)
5. Fig. 4. Origin of genotypes identified in 2024.

下载 (77KB)

版权所有 © Russian Academy of Sciences, 2025