Proteomic Analysis of the Levilactobacillus brevis 47f Strain under Oxidative Stress

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Oxidative stress in a cell is an imbalance between reactive oxygen species (ROS) and the ability to inactivate oxidants and restore damaged molecules. Oxidative stress is involved in the pathogenesis of many human diseases. Lactobacilli, being permanent components of the human intestinal microbiota, are able to reduce the manifestations of oxidative stress in a macroorganism and are used as pharmabiotics in the treatment of diseases caused by it. The strain Levilactobacillus brevis 47f was isolated from the human intestine, studied in vitro and in vivo and is a potential probiotic with antioxidant action. The mechanisms determining the response of the strain to oxidative stress remain poorly understood. The objective of this work was to investigate the reaction of the L. brevis 47f strain to oxidative stress caused by hydrogen peroxide and oxygen using quantitative proteomic analysis. When exposed to both oxidants, the viability of the strain cells remained virtually unchanged, but both oxidants caused significant, but different, changes in the expression of proteins. Oxygen had a stronger effect on the strain than hydrogen peroxide. Under the action of peroxide, stress response proteins were mainly activated, while under the action of oxygen, significant changes in metabolism occurred.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Poluektova

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: epolu@vigg.ru
Ресей, Moscow, 119991

D. Mavletova

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: epolu@vigg.ru
Ресей, Moscow, 119991

R. Ziganshin

Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Email: epolu@vigg.ru
Ресей, Moscow, 117997

V. Danilenko

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: epolu@vigg.ru
Ресей, Moscow, 119991

Әдебиет тізімі

  1. Sies H. Oxidative stress: Concept and some practical aspects // Antioxidants (Basel). 2020. V. 9. № 9. https://doi.org/10.3390/antiox9090852
  2. Sun Y., Wang X., Li L. et al. The role of gut microbiota in intestinal disease: from an oxidative stress perspective // Front. Microbiol. 2024. V. 15. https://doi.org/10.3389/fmicb.2024.1328324
  3. Averina O.V., Poluektova E.U., Marsova M.V., Danilenko V.N. Biomarkers and utility of the antioxidant potential of probiotic lactobacilli and bifidobacteria as representatives of the human gut microbiota // Biomedicines. 2021. V. 9. № 10. https://doi.org/10.3390/biomedicines9101340
  4. Feng T., Wang J. Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review // Gut Microbes. 2020. V. 12. № 1. https://doi.org/10.1080/19490976.2020. 1801944
  5. Kong Y., Olejar K.J., On S.L.W., Chelikani V. The potential of Lactobacillus spp. for modulating oxidative stress in the gastrointestinal tract // Antioxidants (Basel). 2020. V. 9. № 7. https://doi.org/10.3390/antiox9070610
  6. Zhao T., Wang H., Liu Z. et al. Recent perspective of Lactobacillus in reducing oxidative stress to prevent disease // Antioxidants (Basel). 2023. V. 12. № 3. https://doi.org/10.3390/antiox12030769
  7. Feyereisen M., Mahony J., Kelleher P. et al. Comparative genome analysis of the Lactobacillus brevis species // BMC Genomics. 2019. V. 20. № 1. Article 416. https://doi.org/10.1186/s12864-019-5783-1
  8. Kim K., Yang S., Paik H. Probiotic properties of novel probiotic Levilactobacillus brevis KU15147 isolated from radish kimchi and its antioxidant and immunoenhancing activities // Food Sci. Biotechnol. 2021. V. 30. P. 257–265. https://doi.org/10.1007/s10068-020-00853-0
  9. Stankovic M., Veljovic K., Popovic N. et al. Lactobacillus brevis BGZLS10-17 and Lb. plantarum BGPKM22 exhibit anti-inflammatory effect by attenuation of NF-κB and MAPK signaling in human bronchial epithelial cells // Int. J. Mol. Sci. 2022. V. 23. № 10. https://doi.org/10.3390/ijms23105547
  10. Kumar S., Praneet N.S., Suchiang K. Lactobacillus brevis MTCC 1750 enhances oxidative stress resistance and lifespan extension with improved physiological and functional capacity in Caenorhabditis elegans via the DAF-16 pathway // Free Radic. Res. 2022. V. 56. № 7–8. P. 555–571. https://doi.org/10.1080/10715762.2022.2155518
  11. Jiang X., Gu S., Liu D. et al. Lactobacillus brevis 23017 relieves mercury toxicity in the colon by modulation of oxidative stress and inflammation through the interplay of MAPK and NF-κB signaling cascades // Front. Microbiol. 2018. V. 9. https://doi.org/10.3389/fmicb.2018.02425
  12. Yunes R., Poluektova E., Dyachkova M. et al. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota // Anaerobe. 2016. V. 42. P. 197–204. https://doi.org/10.1016/j.anaerobe.2016.10.011
  13. Marsova M., Abilev S., Poluektova E., Danilenko V. A bioluminescent test system reveals valuable antioxidant properties of Lactobacillus strains from human microbiota // World J. Microbiol. Biotechnol. 2018. V. 34. № 2. Article 27. https://doi.org/10.1007/s11274-018-2410-2
  14. Marsova M., Odorskaya M., Novichkova M. et al. The Lactobacillus brevis 47f strain protects the murine intestine from enteropathy induced by 5-fluorouracil // Microorganisms. 2020. V. 8. № 6. https://doi.org/10.3390/microorganisms8060876
  15. Olekhnovich E., Batotsyrenova E., Yunes R. et al. The effects of Levilactobacillus brevis on the physiological parameters and gut microbiota composition of rats subjected to desynchronosis // Microbial. Cell Factories. 2021. V. 20. Article 226. https://doi.org/10.1186/s12934-021-01716-x
  16. Kochetkov N., Smorodinskaya S., Vatlin A. et al. Ability of Lactobacillus brevis 47f to alleviate the toxic effects of imidacloprid low concentration on the histological parameters and cytokine profile of Zebrafish (Danio rerio) // Int. J. Mol. Sci. 2023. V. 24. № 15. https://doi.org/10.3390/ijms241512290
  17. Полуэктова Е.У., Аверина О.В., Ковтун А.С., Даниленко В.Н. Транскриптомный анализ штамма Levilactobacillus brevis 47f в условиях окислительного стресса // Генетика. 2023. Т. 59. № 8. С. 888–897. https://doi.org/10.31857/S0016675823080106
  18. DeMan J., Rogosa M., Sharpe M. A medium for the cultivation of lactobacilli // J. Appl. Microbiol. 1960. V. 23. № 1. P. 130–135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
  19. Rappsilber J., Mann M., Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips // Nat. Protoc. 2007. V. 2. № 8. P. 1896–1906. https://doi.org/10.1038/nprot.2007.261
  20. Ma B., Zhang K., Hendrie C. et al. PEAKS: Powerful software for peptide de novo sequencing by tandem mass spectrometry // Rapid. Commun. Mass Spectrom. 2003. V. 17. № 20. P. 2337–2342. https://doi.org/10.1002/rcm.1196
  21. Yang M., Wenner N., Dykes G.F. et al. Biogenesis of a bacterial metabolosome for propanediol utilization // Nat. Commun. 2022. V. 13. № 1. Article 2920. https://doi.org/10.1038/s41467-022-30608-w
  22. Mota M.J., Lopes R.P., Sousa S. et al. Lactobacillus reuteri growth and fermentation under high pressure towards the production of 1,3-propanediol // Food Res. Int. 2018. V. 113. P. 424–432. https://doi.org/10.1016/j.foodres.2018.07.034
  23. Champomier-Vergès M.C., Zuñiga M., Morel-Deville F. et al. Relationship between arginine degardation, pH and survival in Lactobacillus sakei // FEMS Microbiol. Lett. 1999. V. 180. P. 297–304. https://doi.org/10.1111/j.1574-6968.1999.tb08809.x
  24. Basu Thakur P., Long A.R., Nelson B.J. et al. Complex responses to hydrogen peroxide and hypochlorous acid by the probiotic bacterium Lactobacillus reuteri // mSystems. 2019. V. 4. № 5. https://doi.org/10.1128/mSystems.00453-19
  25. Zhai Z., Yang Y., Wang H. et al. Global transcriptomic analysis of Lactobacillus plantarum CAUH2 in response to hydrogen peroxide stress // Food Microbiol. 2020. V. 87. https://doi.org/10.1016/j.fm.2019.103389
  26. Полуэктова Е.У., Мавлетова Д.А., Одорская М.В. и др. Сравнительный геномный, транскриптомный и протеомный анализ штамма Limosi-lactobacillus fermentum U-21, перспективного для создания фармабиотика // Генетика. 2022. Т. 58. № 9. С. 1029–1041. https://doi.org/10.31857/S0016675822090120
  27. Averill-Bates D.A. The antioxidant glutathione // Vitam. Horm. 2023. V. 121. P. 109–141. https://doi.org/10.1016/bs.vh.2022.09.002.
  28. Lin X., Xia Y., Yang Y. et al. Probiotic characteristics of Lactobacillus plantarum AR113 and its molecular mechanism of antioxidant // LWT. 2020. V. 126. https://doi.org/ 10.1016/j.lwt.2020.109278
  29. Weissbach H., Etienne F., Hoshi T. et al. Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function // Arch. Biochem. Biophys. 2002. V. 397. № 2. P. 172–178. https://doi.org/10.1006/abbi.2001.2664.
  30. Zhang C., Gui Y., Chen X. et al. Transcriptional homogenization of Lactobacillus rhamnosus hsryfm 1301 under heat stress and oxidative stress // Appl. Microbiol. Biotechnol. 2020. V. 104. № 6. P. 2611–2621. https://doi.org/10.1007/s00253-020-10407-3
  31. Rojas-Tapias D.F., Helmann J.D. Roles and regulation of Spx family transcription factors in Bacillus subtilis and related species // Adv. Microb. Physiol. 2019. V. 75. P. 279–323. https://doi.org/10.1016/bs.ampbs.2019.05.003
  32. Teixeira J.S., Seeras A., Sanchez-Maldonado A.F. et al. Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri // Food Microbiol. 2014. V. 42. P. 172–180. https://doi.org/10.1016/j.fm.2014.03.015
  33. Zotta T., Parente E., Ricciardi A. Aerobic metabolism in the genus Lactobacillus: Impact on stress response and potential applications in the food industry // J. Appl. Microbiol. 2017. V. 122. № 4. P. 857–869. https://doi.org/10.1111/jam.13399
  34. Kang T., Korbe D.R., Tanaka T. Influence of oxygen on NADH recycling and oxidative stress resistance systems in Lactobacillus panis PM1 // AMB Expr. 2013. V. 3. № 1. https://doi.org/10.1186/2191-0855-3-10
  35. Stevens M.J.A., Wiersma A., de Vos W.M. et al. Improvement of Lactobacillus plantarum aerobic growth as directed by comprehensive transcriptome analysis // Appl. Environ. Microbiol. 2008. V. 74. № 15. P. 4776–4778. https://doi.org/10.1128/AEM.00136-08
  36. Lu J., Holmgren A. The thioredoxin antioxidant sys-tem // Free Radic. Biol. Med. 2014. V. 66. P. 75–87. https://doi.org/ 10.1016/j.freeradbiomed.2013.07.036
  37. Siciliano R.A., Pannella G., Lippolis R. et al. Impact of aerobic and respirative life-style on Lactobacillus casei N87 proteome // Int. J. Food Microbiol. 2019. V. 298. P. 51–62. https://doi.org/10.1016/j.ijfoodmicro.2019.03.006
  38. Dinarieva T.Y., Klimko A.I., Kahnt J. et al. Adaptation of Lacticaseibacillus rhamnosus CM MSU 529 to aerobic growth: a proteomic approach // Microorganisms. 2023. V. 11. № 2. https://doi.org/10.3390/microorganisms11020313
  39. Averina O.V., Kovtun A.S., Mavletova D.A. et al. Oxidative stress response of probiotic strain Bifidobacterium longum subsp. longum GT15 // Foods. 2023. V. 12. № 18. https://doi.org/10.3390/foods12183356
  40. Gao Y., Liu Y., Ma F. et al. Global transcriptomic and proteomics analysis of Lactobacillus plantarum Y44 response to 2,2-azobis(2-methylpropionamidine) dihydrochloride (AAPH) stress // J. Proteomics. 2020. V. 226. https://doi.org/10.1016/j.jprot.2020.103903
  41. Xu H., Wu L., Pan D. et al. Adhesion characteristics and dual transcriptomic and proteomic analysis of Lactobacillus reuteri SH23 upon gastrointestinal fluid stress // J. Proteome Res. 2021. V. 20. № 5. P. 2447–2457. https://doi.org/10.1021/acs.jproteome.0c00933
  42. Аверина О.В., Ковтун А.С., Мавлетова Д.А. и др. Реакция штамма Bifidobacterium longum subsp. infantis ATCC 15697 на окислительный стресс // Генетика. 2023. Т. 59. № 8. С. 898–913. https://doi.org/10.31857/S0016675823080039

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Growth of L. brevis 47f strain under oxidative stress. a - cell viability of the strain at the time of sampling for proteomic analysis. Control cultures grew under the same time conditions as the experimental ones, i.e. exponential phase + 2 h (K1) or + 4 h (K2), but without oxidants; b - growth curves of the strain, where the zero point corresponds to the exponential growth phase.

Жүктеу (112KB)
3. Fig. 2. Distribution of proteome analysis proteins in the Volcano plot (a) and the number of proteins with increased and decreased expression in the Venn diagram (b).

Жүктеу (316KB)
4. Fig. 3. Number of proteins with altered expression - common to peroxide and oxygen and specific. a - proteins with increased expression; b - proteins with decreased expression.

Жүктеу (98KB)
5. Fig. 4. Distribution of proteins of L. brevis 47f strain with altered expression under hydrogen peroxide action by functional COG categories.

Жүктеу (293KB)
6. Fig. 5. Distribution of proteins of L. brevis 47f strain with altered expression under oxygen action by functional COG categories.

Жүктеу (306KB)

© Russian Academy of Sciences, 2025