Monocytes/Macrophages as One of the Sources of Myofibroblasts in the Development of Tissue Fibrosis: the Role of Non-Coding RNAs
- Authors: Balan O.V.1, Malysheva I.E.1, Fedorenko O.M.1
-
Affiliations:
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences
- Issue: Vol 61, No 3 (2025)
- Pages: 11-20
- Section: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://ter-arkhiv.ru/0016-6758/article/view/679417
- DOI: https://doi.org/10.31857/S0016675825030027
- EDN: https://elibrary.ru/ULZNME
- ID: 679417
Cite item
Abstract
Recently, more and more attention has been paid to the study of the role of epigenetic mechanisms in the development and progression of immunoinflammatory diseases accompanied by the development of fibrosis. Epigenetic modifications, compared with genetic changes that persist throughout the life of an organism, are extremely dynamic and can differ both in different cell populations and in the same cell depending on the stage of differentiation and microenvironment. The review summarizes information on the potential role of key epigenetic factors, in particular non-coding RNAs, in the differentiation of circulating bone marrow-derived monocytes into myofibroblasts, cellular mediators of fibrosis. Due to their high plasticity and ability to phenotypic transformation, monocytes and macrophages are the most important participants in tissue homeostasis and play a key role in the development of fibrosis at all stages of tissue repair, from inflammation to remodeling.
Full Text

About the authors
O. V. Balan
Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences
Author for correspondence.
Email: ovbalan@mail.ru
Russian Federation, Petrozavodsk, 185910
I. E. Malysheva
Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences
Email: ovbalan@mail.ru
Russian Federation, Petrozavodsk, 185910
O. M. Fedorenko
Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences
Email: ovbalan@mail.ru
Russian Federation, Petrozavodsk, 185910
References
- Antar S.A., Ashour N.A., Marawan M.E., Al-Karmala-wy A.A. Fibrosis: Types, effects, markers, mechanisms for disease progression, and its relation with oxidative stress, immunity, and inflammation // Int. J. Mol. Sci. 2023. V. 24. https://doi.org/10.3390/ijms24044004
- Winn T.A. Cellular and molecular mechanisms of fibrosis // J. Pathol. 2008. V. 214. P. 199–210. https://doi.org/10.1002/path.2277
- Zeisberg M., Kalluri R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis // Am. J. Physiol. Cell Physiol. 2013. V. 304. P. 216–225. https://doi.org/10.1152/ajpcell.00328.2012
- Frangogiannis N.G. Fibroblast-extracellular matrix interactions in tissue fibrosis // Curr. Pathobiol. Rep. 2016. V. 4. P. 11–18. https://doi.org/10.1007/s40139-016-0099-1
- Herrera J., Henke C.A., Bitterman P.B. Extracellular matrix as a driver of progressive fibrosis // J. Clin. Invest. 2018. V. 128 P. 45–53. https://doi.org/10.1172/JCI93557
- Zhang H., Zhou Y., Wen D., Wang J. Noncoding RNAs: Master regulator of fibroblast to myofibroblast transition in fibrosis // Int. J. Mol. Sci. 2023. V. 24. P. 1801. https://doi.org/10.3390/ijms24021801
- Kendall R.T., Feghali-Bostwick C.A. Fibroblasts in fibrosis: Novel roles and mediators // Front. Pharmacol. 2014. V. 5. https://doi.org/10.3389/fphar.2014.00123
- Di Carlo S.E., Peduto L. The perivascular origin of pathological fibroblasts // J. Clin. Invest. 2018. V. 128. P. 54–63. https://doi.org/10.1172/JCI93558
- Driskell R.R., Watt F.M. Understanding fibroblast heterogeneity in the skin // Trends Cell Biol. 2015. V. 25. P. 92–99. https://doi.org/10.1016/j.tcb.2014.10.001
- Mack M., Yanagita M. Origin of myofibroblasts and cellular events triggering fibrosis // Kidney Int. 2015. V. 87. P. 297–307. https://doi.org/10.1038/ki.2014
- LeBleu V.S., Neilson E.G. Origin and functional heterogeneity of fibroblasts // FASEB J. 2020. V. 34. P. 3519–3536. https://doi.org/10.1096/fj.201903188R
- Haider N., Bosca L., Zandbergen H.R. et al. Transition of macrophages to fibroblast-like cells in healing myocardial infarction // J. Am. Coll Cardiol. 2019. V. 74. P. 3124–3135. https://doi.org/10.1016/j.jacc.2019.10.036
- Evans S., Butler J.R., Mattila J.T., Kirschner D.E. Systems biology predicts that fibrosis in tuberculous granulomas may arise through macrophage-to-myofibroblast transformation // PLoS Comput. Biol. 2020. V. 16. https://doi.org/10.1371/journal.pcbi.1008520
- Torres A., Munoz K., Nahuelpan Y.R. et al. Intraglomerular monocyte/macrophage infiltration and macrophage-myofibroblast transition during diabetic nephropathy is regulated by the A2B adenosine receptor // Cells. 2020. V. 9. https://doi.org/10.3390/cells9041051
- Feng Y., Guo F., Xia Z. et al. Inhibition of fatty acid-binding protein 4 attenuated kidney fibrosis by mediating macrophage-to-myofibroblast transition // Front. Immunol. 2020. V. 11. https://doi.org/10.3389/fimmu.2020.566535
- Tang P.M., Zhang Y.Y., Xiao J. et al. Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition // Proc. Natl Acad. Sci. USA. 2020. V. 117. P. 20741–20752. https://doi.org/10.1073/pnas.1917663117
- Yang F., Chang Y., Zhang C. et al. UUO induces lung fibrosis with macrophage-myofibroblast transition in rats // Int. Immunopharmacol. 2021. V. 93. https://doi.org/10.1016/j.intimp.2021.107396
- Wynn T.A., Barron L. Macrophages: Master regulators of inflammation and fibrosis // Semin. Liver Dis. 2010. V. 30. P. 245–257. https://doi.org/10.1055/s-0030-1255354
- Weber K.T., Sun Y., Bhattacharya S.K. et al. Myofibroblast-mediated mechanisms of pathological remodelling of the heart // Nat. Rev. Cardiol. 2013. V. 10. P. 15–26. https://doi.org/10.1038/nrcardio.2012.158
- Cortez-Retamozo V., Etzrodt M., Newton A. et al. Angiotensin II drives the production of tumor-promoting macrophages // Immunity. 2013. V. 38. Р. 296–308. https://doi.org/10.1016/j.immuni.2012.10.015
- Shapouri-Moghaddam A., Mohammadian S., Vazini H. et al. Macrophage plasticity, polarization, and function in health and disease // J. Cell Physiol. 2018. V. 233. P. 6425–6440. https://doi.org/10.1002/jcp.26429
- Martinez F.O., Sica A., Mantovani A., Locati M. Macrophage activation and polarization // Front. Biosci. 2008. V. 13. P. 453–461. https://article.imrpress.com/bri/Landmark/articles/pdf/Landmark2692.pdf
- Xue J., Schmidt S.V., Sander J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation // Immunity. 2014. V. 40. P. 274–288. https://doi.org/10.1016/j.immuni.2014.01.006
- Yao Y., Xu X.H., Jin L. Macrophage polarization in physiological and pathological pregnancy // Front. Immunol. 2019. V. 10. https://doi.org/10.3389/fimmu.2019.00792
- Wynn T.A., Vannella K.M. Macrophages in tissue repair, regeneration, and fibrosis // Immunity. 2016. V. 44. P. 450–462. 10.1016/j.immuni.2016.02.015
- Kiseleva V., Vishnyakova P., Elchaninov A. et al. Biochemical and molecular inducers and modulators of M2 macrophage polarization in clinical perspective // Inter. Immunopharmacology. 2023. V. 122. https://doi.org/10.1016/j.intimp.2023.110583
- Lech M., Anders H.J. Macrophages and fibrosis: How resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair // Biochim. Biophys. Acta. 2013. V. 1832. P. 989–997. https://doi.org/10.1016/j.bbadis.2012.12.001
- Lavine K.J., Epelman S., Uchida K. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart // Proc. Natl Acad. Sci. USA. 2014. V. 111. P. 16029–16034. https://doi.org/10.1073/pnas.140650811
- Stutchfield B.M., Antoine D.J., Mackinnon A.C. et al. CSF1 restores innate immunity after liver injury in mice and serum levels indicate outcomes of patients with acute liver failure // Gastroenterology. 2015. V. 149. P. 1896–1909. https://doi.org/10.1053/j.gastro.2015.08.053
- Laskin D.L., Malaviya R., Laskin J.D. Role of macrophages in acute lung injury and chronic fibrosis induced by pulmonary toxicants // Toxicol. Sci. 2019. V. 168. P. 287–301. https://doi.org/10.1093/toxsci/kfy309
- Hou J., Shi J., Chen L. et al. M2 macrophages promote myofibroblast differentiation of LR-MSCs and are associated with pulmonary fibrogenesis // Cell Commun. Signal. 2018. V. 16. P. 89. https://doi.org/10.1186/s12964-018-0300-8
- Meng X.-M., Mak T.S.-K., Lan H.-Y. Macrophages in renal fibrosis. In renal fibrosis // Adv. Exp. Med. Biol. 2019. V. 1165. P. 285–303. https://doi.org/10.1007/978-981-13-8871-2_13
- Heidt T., Courties G., Dutta P. et al. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction // Circ. Res. 2014. V. 115. P. 284–295. https://doi.org/10.1161/CIRCRESAHA.115.303567
- Usher M.G., Duan S.Z., Ivaschenko C.Y. et al. Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mic // J. Clin. Investig. 2010. V. 120. P. 3350–3364. https://doi.org/10.1172/JCI41080
- Luther J.M., Fogo A.B. The role of mineralocorticoid receptor activation in kidney inflammation and fibrosis // Kidney Int. Suppl. 2022. V. 12. P. 63–68. https://doi.org/10.1016/j.kisu.2021.11.006
- Bucala R., Spiegel L.A., Chesney J. et al. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair // Mol. Med. 1994. V. 1. P. 71–81.
- Nikolic-Paterson D.J., Wang S., Lan H.Y. Macrophages promote renal fibrosis through direct and indirect mechanisms // Kidney Int. Suppl. 2014. V. 4. P. 34–38. https://doi.org/10.1038/kisup.2014.7
- Wang S., Meng X.M., Ng Y.Y. et al. TGF-beta/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis // Oncotarget. 2016. V. 7. P. 8809–8822. https://doi.org/10.18632/oncotarget.6604
- Vierhout M., Ayoub A., Naiel S. et al. Monocyte and macrophage derived myofibroblasts: Is it fate? A review of the current evidence // Wound. Repair Regen. 2021. V. 29. № 4. P. 548–562. https://doi.org/10.1111/wrr.12946
- Wang Y.Y., Jiang H., Pan J. et al. Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury // J. Am. Soc. Nephrol. 2017. V. 28. P. 2053–2067. https://doi.org/10.1681/ASN.2016050573
- Little K., Llorian-Salvador M., Tang M. et al. Macrophage to myofibroblast transition contributes to subretinal fibrosis secondary to neovascular age-related macular degeneration // J. Neuroinflammation. 2020. V. 17. P. 355. https://doi.org/10.1186/s12974-020-02033-7
- Meng X.M., Wang S., Huang X.R. et al. Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis // Cell Death Dis. 2016. V. 7. P. 2495. https://doi.org/10.1038/cddis.2016.402
- Lan H.Y., Chung A.C.K. Transforming growth factor-β and Smads // Contrib. Nephrol. 2011. V. 170. P. 75–82. https://doi.org/10.1159/000324949
- Skhirtladze C., Distler O., Dees C. et al. Src kinases in systemic sclerosis: Central roles in fibroblast activation and in skin fibrosis // Arthritis Rheum. 2008. V. 58. P. 1475–1484. https://doi.org/10.1002/art.23436
- Tang P.M.-K., Zhou S., Li C.-J. et al. The proto-oncogene tyrosine protein kinase Src is essential for macrophage-myofibroblast transition during renal scarring // Kidney Int. 2018. V. 93. P. 173–187. https://doi.org/10.1016/j.kint.2017.07.026
- Yang Y., Feng X., Liu X. et al. Fate alteration of bone marrow-derived macrophages ameliorates kidney fibrosis in murine model of unilateral ureteral obstruction // Nephrol. Dial Transplant. 2019. V. 34. P. 1657–1668. https://doi.org/10.1093/ndt/gfy381
- Yan J., Zhang Z., Yang J. et al. JAK3/STAT6 stimulates bone marrow-derived fibroblast activation in renal fibrosis // J. Am. Soc. Nephrol. 2015. V. 26. P. 3060–3071. https://doi.org/10.1681/ASN.2014070717
- Jiao B., An C., Du H. et al. STAT6 deficiency attenuates myeloid fibroblast activation and macrophage polarization in experimental folic acid nephropathy // Cells. 2021. V. 10. https://doi.org/10.3390/cells10113057
- Huang X., He C., Hua X. et al. Oxidative stress induces monocyte-tomyofibroblast transdifferentiation through p38 in pancreatic ductal adenocarcinoma // Clin. Transl. Med. 2020. V. 10. https://doi.org/10.1002/ctm2.41
- Yang C., Zheng S.D., Wu H.J., Chen S.J. Regulatory mechanisms of the molecular pathways in fibrosis induced by microRNAs // Chin. Med. J. 2016. V. 129. P. 2365–2372. https://doi.org/10.4103/0366-6999.190677
- Liu R.H., Ning B., Ma X.E. et al. Regulatory roles of microRNA-21 in fibrosis through interaction with diverse pathways // Mol. Med. Rep. 2016. V. 13. P. 2359–2366. https://doi.org/10.3892/mmr.2016.4834
- Zhao S., Li W., Yu W.T. et al. Exosomal miR-21 from tubular cells contributes to renal fibrosis by activating fibroblasts via targeting PTEN in obstructed kidneys // Theranostics. 2021. V. 11. P. 8660–8673. https://doi.org/10.7150/thno.62820
- Li D., Mao C., Zhou E. et al. MicroRNA-21 mediates a positive feedback on angiotensin II-induced myofibroblast transformation // J. Inflamm. Res. 2020. V. 13. P. 1007–1020. https://doi.org/10.2147/JIR.S285714
- Chen T., Li Z., Tu J. et al. MicroRNA-29a regulates pro-inflammatory cytokine secretion and scavenger receptor expression by targeting LPL in oxLDL-stimulated dendritic cells // FEBS Lett. 2011. V. 585. P. 657–663. https://doi.org/10.1016/j.febslet.2011.01.027
- Yuan R., Dai X., Li Y. et al. Exosomes from miR-29a-modified adipose-derived mesenchymal stem cells reduce excessive scar formation by inhibiting TGF-beta 2/Smad3 signaling // Mol. Med. Rep. 2021. V. 24. https://doi.org/10.3892/mmr.2021.12398
- Smyth A., Callaghan B., Willoughby C.E., O'Brien C. The role of miR-29 family in TGF-β driven fibrosis in glaucomatous optic neuropathy // Int. J. Mol. Sci. 2022. V. 23. https://doi.org/10.3390/ijms231810216
- Bouhlel M.A., Derudas B., Rigamonti E. et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties // Cell Metab. 2007. V. 6. P. 137–143. https://doi.org/10.1016/j.cmet.2007.06.010
- Peng X., He F., Mao Y. et al. miR-146a promotes M2 macrophage polarization and accelerates diabetic wound healing by inhibiting the TLR4/NF-κB axis // J. Mol. Endocrinol. 2022. V. 69. P. 315–327. https://doi.org/10.1530/JME-21-0019
- Yuan B.Y., Chen Y.H., Wu Z.F. et al. MicroRNA-146a-5p attenuates fibrosis-related molecules in irradiated and TGF-beta1-treated human hepatic stellate cells by regulating PTPRA-SRC signaling // Radiat. Res. 2019. V. 192. P. 621–629. https://doi.org/10.1667/RR15401.1
- Tu X., Zheng X., Li H. et al. MicroRNA-30 protects against carbon tetrachloride-induced liver fibrosis by attenuating transforming growth factor beta signaling in hepatic stellate cells // Toxicol. Sci. 2015. V. 146. № 1. P. 157–169. https://doi.org/10.1093/toxsci/kfv081
- Zhao S., Xiao X., Sun S. et al. MicroRNA-30d/JAG1 axis modulates pulmonary fibrosis through Notch signaling pathway // Pathol. Res. Pract. 2018. V. 214. P. 1315–1323. https://doi.org/10.1016/j.prp.2018.02.014
- Cui H., Banerjee S., Xie N. et al. MicroRNA-27a-3p Is a negative regulator of lung fibrosis by targeting myofibroblast differentiation // Am. J. Respir. Cell Mol. Biol. 2016. V. 54. P. 843–852. https://doi.org/10.1165/rcmb.2015-0205OC
- Fabian M.R., Sonenberg N., Filipowicz W. Regulation of mRNA translation and stability by microRNAs // Ann. Rev. Biochem. 2010. V. 79. P. 351–379. https://doi.org/10.1146/annurev-biochem-060308-103103
- Li C., Liu Y.F., Huang C. et al. Long noncoding RNA NEAT1 sponges miR-129 to modulate renal fibrosis by regulation of collagen type I // Am. J. Physiol. Renal. Physiol. 2020. V. 319. P. 93–105. https://doi.org/10.1152/ajprenal.00552.2019
- Zhu Y., Feng Z., Jian Z., Xiao Y. Long noncoding RNA TUG1 promotes cardiac fibroblast transformation to myofibroblasts via miR-29c in chronic hypoxia // Mol. Med. Rep. 2018. V. 18. P. 3451–3460. https://doi.org/10.3892/mmr.2018.9327
- Yu C.-C., Liao Y.-W., Hsieh P.-L., Chang Y.-C. Targeting lncRNA H19/miR-29b/COL1A1 axis impedes myofibroblast activities of precancerous oral submucous fibrosis // Int. J. Mol. Sci. 2021. V. 22. https://doi.org/10.3390/ijms22042216
- Zhang Y.Y., Tan R.Z., Yu Y., Niu Y.Y. LncRNA GAS5 protects against TGF-β-induced renal fibrosis via the Smad3/miRNA-142-5p // Am. J. Physiol. Renal Physiol. 2021. V. 321. № 4. P. 517–526. https://doi.org/10.1152/ajprenal.00085.2021
- Algeciras L., Palanca A., Maestro D. et al. Epigenetic alterations of TGF-β and its main canonical signaling mediators in the context of cardiac fibrosis // J. Mol. Cell Cardiol. 2021. V. 159. P. 38–47. https://doi.org/10.1016/j.yjmcc.2021.06.003
- Tang R., Wang Y.C., Mei X. LncRNA GAS5 attenuates fibroblast activation through inhibiting Smad3 signaling // Am. J. Physiol. Cell Physiol. 2020. V. 319. P. 105–115. https://doi.org/10.1152/ajpcell.00059.2020
- Fan Y., Zhao X., Ma J., Yang L. LncRNA GAS5 competitively combined with miR-21 regulates PTEN and influences EMT of peritoneal mesothelial cells via Wnt/β-Catenin signaling pathway // Front. Physiol. 2021. V. 12. https://doi.org/10.3389/fphys.2021.654951
- Zheng Q., Bao C., Guo W. et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs // Nat. Commun. 2016. V. 7. https://doi.org/10.1038/ncomms11215
- Li C., Meng X., Wang L., Dai X. Mechanism of action of non-coding RNAs and traditional Chinese medicine in myocardial fibrosis: Focus on the TGF-β/Smad signaling pathway // Front Pharmacol. 2023. V. 14. https://doi.org/10.3389/fphar.2023.1092148
- Su P., Qiao Q., Ji G., Zhang Z. CircAMD1 regulates proliferation and collagen synthesis via sponging miR-27a-3p in P63-mutant human dermal fibroblasts // Differentiation. 2021. V. 119. P. 10–18. https://doi.org/10.1016/j.diff.2021.04.002
Supplementary files
