Monocytes/Macrophages as One of the Sources of Myofibroblasts in the Development of Tissue Fibrosis: the Role of Non-Coding RNAs

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Recently, more and more attention has been paid to the study of the role of epigenetic mechanisms in the development and progression of immunoinflammatory diseases accompanied by the development of fibrosis. Epigenetic modifications, compared with genetic changes that persist throughout the life of an organism, are extremely dynamic and can differ both in different cell populations and in the same cell depending on the stage of differentiation and microenvironment. The review summarizes information on the potential role of key epigenetic factors, in particular non-coding RNAs, in the differentiation of circulating bone marrow-derived monocytes into myofibroblasts, cellular mediators of fibrosis. Due to their high plasticity and ability to phenotypic transformation, monocytes and macrophages are the most important participants in tissue homeostasis and play a key role in the development of fibrosis at all stages of tissue repair, from inflammation to remodeling.

Full Text

Restricted Access

About the authors

O. V. Balan

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Author for correspondence.
Email: ovbalan@mail.ru
Russian Federation, Petrozavodsk, 185910

I. E. Malysheva

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Email: ovbalan@mail.ru
Russian Federation, Petrozavodsk, 185910

O. M. Fedorenko

Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences

Email: ovbalan@mail.ru
Russian Federation, Petrozavodsk, 185910

References

  1. Antar S.A., Ashour N.A., Marawan M.E., Al-Karmala-wy A.A. Fibrosis: Types, effects, markers, mechanisms for disease progression, and its relation with oxidative stress, immunity, and inflammation // Int. J. Mol. Sci. 2023. V. 24. https://doi.org/10.3390/ijms24044004
  2. Winn T.A. Cellular and molecular mechanisms of fibrosis // J. Pathol. 2008. V. 214. P. 199–210. https://doi.org/10.1002/path.2277
  3. Zeisberg M., Kalluri R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis // Am. J. Physiol. Cell Physiol. 2013. V. 304. P. 216–225. https://doi.org/10.1152/ajpcell.00328.2012
  4. Frangogiannis N.G. Fibroblast-extracellular matrix interactions in tissue fibrosis // Curr. Pathobiol. Rep. 2016. V. 4. P. 11–18. https://doi.org/10.1007/s40139-016-0099-1
  5. Herrera J., Henke C.A., Bitterman P.B. Extracellular matrix as a driver of progressive fibrosis // J. Clin. Invest. 2018. V. 128 P. 45–53. https://doi.org/10.1172/JCI93557
  6. Zhang H., Zhou Y., Wen D., Wang J. Noncoding RNAs: Master regulator of fibroblast to myofibroblast transition in fibrosis // Int. J. Mol. Sci. 2023. V. 24. P. 1801. https://doi.org/10.3390/ijms24021801
  7. Kendall R.T., Feghali-Bostwick C.A. Fibroblasts in fibrosis: Novel roles and mediators // Front. Pharmacol. 2014. V. 5. https://doi.org/10.3389/fphar.2014.00123
  8. Di Carlo S.E., Peduto L. The perivascular origin of pathological fibroblasts // J. Clin. Invest. 2018. V. 128. P. 54–63. https://doi.org/10.1172/JCI93558
  9. Driskell R.R., Watt F.M. Understanding fibroblast heterogeneity in the skin // Trends Cell Biol. 2015. V. 25. P. 92–99. https://doi.org/10.1016/j.tcb.2014.10.001
  10. Mack M., Yanagita M. Origin of myofibroblasts and cellular events triggering fibrosis // Kidney Int. 2015. V. 87. P. 297–307. https://doi.org/10.1038/ki.2014
  11. LeBleu V.S., Neilson E.G. Origin and functional heterogeneity of fibroblasts // FASEB J. 2020. V. 34. P. 3519–3536. https://doi.org/10.1096/fj.201903188R
  12. Haider N., Bosca L., Zandbergen H.R. et al. Transition of macrophages to fibroblast-like cells in healing myocardial infarction // J. Am. Coll Cardiol. 2019. V. 74. P. 3124–3135. https://doi.org/10.1016/j.jacc.2019.10.036
  13. Evans S., Butler J.R., Mattila J.T., Kirschner D.E. Systems biology predicts that fibrosis in tuberculous granulomas may arise through macrophage-to-myofibroblast transformation // PLoS Comput. Biol. 2020. V. 16. https://doi.org/10.1371/journal.pcbi.1008520
  14. Torres A., Munoz K., Nahuelpan Y.R. et al. Intraglomerular monocyte/macrophage infiltration and macrophage-myofibroblast transition during diabetic nephropathy is regulated by the A2B adenosine receptor // Cells. 2020. V. 9. https://doi.org/10.3390/cells9041051
  15. Feng Y., Guo F., Xia Z. et al. Inhibition of fatty acid-binding protein 4 attenuated kidney fibrosis by mediating macrophage-to-myofibroblast transition // Front. Immunol. 2020. V. 11. https://doi.org/10.3389/fimmu.2020.566535
  16. Tang P.M., Zhang Y.Y., Xiao J. et al. Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition // Proc. Natl Acad. Sci. USA. 2020. V. 117. P. 20741–20752. https://doi.org/10.1073/pnas.1917663117
  17. Yang F., Chang Y., Zhang C. et al. UUO induces lung fibrosis with macrophage-myofibroblast transition in rats // Int. Immunopharmacol. 2021. V. 93. https://doi.org/10.1016/j.intimp.2021.107396
  18. Wynn T.A., Barron L. Macrophages: Master regulators of inflammation and fibrosis // Semin. Liver Dis. 2010. V. 30. P. 245–257. https://doi.org/10.1055/s-0030-1255354
  19. Weber K.T., Sun Y., Bhattacharya S.K. et al. Myofibroblast-mediated mechanisms of pathological remodelling of the heart // Nat. Rev. Cardiol. 2013. V. 10. P. 15–26. https://doi.org/10.1038/nrcardio.2012.158
  20. Cortez-Retamozo V., Etzrodt M., Newton A. et al. Angiotensin II drives the production of tumor-promoting macrophages // Immunity. 2013. V. 38. Р. 296–308. https://doi.org/10.1016/j.immuni.2012.10.015
  21. Shapouri-Moghaddam A., Mohammadian S., Vazini H. et al. Macrophage plasticity, polarization, and function in health and disease // J. Cell Physiol. 2018. V. 233. P. 6425–6440. https://doi.org/10.1002/jcp.26429
  22. Martinez F.O., Sica A., Mantovani A., Locati M. Macrophage activation and polarization // Front. Biosci. 2008. V. 13. P. 453–461. https://article.imrpress.com/bri/Landmark/articles/pdf/Landmark2692.pdf
  23. Xue J., Schmidt S.V., Sander J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation // Immunity. 2014. V. 40. P. 274–288. https://doi.org/10.1016/j.immuni.2014.01.006
  24. Yao Y., Xu X.H., Jin L. Macrophage polarization in physiological and pathological pregnancy // Front. Immunol. 2019. V. 10. https://doi.org/10.3389/fimmu.2019.00792
  25. Wynn T.A., Vannella K.M. Macrophages in tissue repair, regeneration, and fibrosis // Immunity. 2016. V. 44. P. 450–462. 10.1016/j.immuni.2016.02.015
  26. Kiseleva V., Vishnyakova P., Elchaninov A. et al. Biochemical and molecular inducers and modulators of M2 macrophage polarization in clinical perspective // Inter. Immunopharmacology. 2023. V. 122. https://doi.org/10.1016/j.intimp.2023.110583
  27. Lech M., Anders H.J. Macrophages and fibrosis: How resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair // Biochim. Biophys. Acta. 2013. V. 1832. P. 989–997. https://doi.org/10.1016/j.bbadis.2012.12.001
  28. Lavine K.J., Epelman S., Uchida K. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart // Proc. Natl Acad. Sci. USA. 2014. V. 111. P. 16029–16034. https://doi.org/10.1073/pnas.140650811
  29. Stutchfield B.M., Antoine D.J., Mackinnon A.C. et al. CSF1 restores innate immunity after liver injury in mice and serum levels indicate outcomes of patients with acute liver failure // Gastroenterology. 2015. V. 149. P. 1896–1909. https://doi.org/10.1053/j.gastro.2015.08.053
  30. Laskin D.L., Malaviya R., Laskin J.D. Role of macrophages in acute lung injury and chronic fibrosis induced by pulmonary toxicants // Toxicol. Sci. 2019. V. 168. P. 287–301. https://doi.org/10.1093/toxsci/kfy309
  31. Hou J., Shi J., Chen L. et al. M2 macrophages promote myofibroblast differentiation of LR-MSCs and are associated with pulmonary fibrogenesis // Cell Commun. Signal. 2018. V. 16. P. 89. https://doi.org/10.1186/s12964-018-0300-8
  32. Meng X.-M., Mak T.S.-K., Lan H.-Y. Macrophages in renal fibrosis. In renal fibrosis // Adv. Exp. Med. Biol. 2019. V. 1165. P. 285–303. https://doi.org/10.1007/978-981-13-8871-2_13
  33. Heidt T., Courties G., Dutta P. et al. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction // Circ. Res. 2014. V. 115. P. 284–295. https://doi.org/10.1161/CIRCRESAHA.115.303567
  34. Usher M.G., Duan S.Z., Ivaschenko C.Y. et al. Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mic // J. Clin. Investig. 2010. V. 120. P. 3350–3364. https://doi.org/10.1172/JCI41080
  35. Luther J.M., Fogo A.B. The role of mineralocorticoid receptor activation in kidney inflammation and fibrosis // Kidney Int. Suppl. 2022. V. 12. P. 63–68. https://doi.org/10.1016/j.kisu.2021.11.006
  36. Bucala R., Spiegel L.A., Chesney J. et al. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair // Mol. Med. 1994. V. 1. P. 71–81.
  37. Nikolic-Paterson D.J., Wang S., Lan H.Y. Macrophages promote renal fibrosis through direct and indirect mechanisms // Kidney Int. Suppl. 2014. V. 4. P. 34–38. https://doi.org/10.1038/kisup.2014.7
  38. Wang S., Meng X.M., Ng Y.Y. et al. TGF-beta/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis // Oncotarget. 2016. V. 7. P. 8809–8822. https://doi.org/10.18632/oncotarget.6604
  39. Vierhout M., Ayoub A., Naiel S. et al. Monocyte and macrophage derived myofibroblasts: Is it fate? A review of the current evidence // Wound. Repair Regen. 2021. V. 29. № 4. P. 548–562. https://doi.org/10.1111/wrr.12946
  40. Wang Y.Y., Jiang H., Pan J. et al. Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury // J. Am. Soc. Nephrol. 2017. V. 28. P. 2053–2067. https://doi.org/10.1681/ASN.2016050573
  41. Little K., Llorian-Salvador M., Tang M. et al. Macrophage to myofibroblast transition contributes to subretinal fibrosis secondary to neovascular age-related macular degeneration // J. Neuroinflammation. 2020. V. 17. P. 355. https://doi.org/10.1186/s12974-020-02033-7
  42. Meng X.M., Wang S., Huang X.R. et al. Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis // Cell Death Dis. 2016. V. 7. P. 2495. https://doi.org/10.1038/cddis.2016.402
  43. Lan H.Y., Chung A.C.K. Transforming growth factor-β and Smads // Contrib. Nephrol. 2011. V. 170. P. 75–82. https://doi.org/10.1159/000324949
  44. Skhirtladze C., Distler O., Dees C. et al. Src kinases in systemic sclerosis: Central roles in fibroblast activation and in skin fibrosis // Arthritis Rheum. 2008. V. 58. P. 1475–1484. https://doi.org/10.1002/art.23436
  45. Tang P.M.-K., Zhou S., Li C.-J. et al. The proto-oncogene tyrosine protein kinase Src is essential for macrophage-myofibroblast transition during renal scarring // Kidney Int. 2018. V. 93. P. 173–187. https://doi.org/10.1016/j.kint.2017.07.026
  46. Yang Y., Feng X., Liu X. et al. Fate alteration of bone marrow-derived macrophages ameliorates kidney fibrosis in murine model of unilateral ureteral obstruction // Nephrol. Dial Transplant. 2019. V. 34. P. 1657–1668. https://doi.org/10.1093/ndt/gfy381
  47. Yan J., Zhang Z., Yang J. et al. JAK3/STAT6 stimulates bone marrow-derived fibroblast activation in renal fibrosis // J. Am. Soc. Nephrol. 2015. V. 26. P. 3060–3071. https://doi.org/10.1681/ASN.2014070717
  48. Jiao B., An C., Du H. et al. STAT6 deficiency attenuates myeloid fibroblast activation and macrophage polarization in experimental folic acid nephropathy // Cells. 2021. V. 10. https://doi.org/10.3390/cells10113057
  49. Huang X., He C., Hua X. et al. Oxidative stress induces monocyte-tomyofibroblast transdifferentiation through p38 in pancreatic ductal adenocarcinoma // Clin. Transl. Med. 2020. V. 10. https://doi.org/10.1002/ctm2.41
  50. Yang C., Zheng S.D., Wu H.J., Chen S.J. Regulatory mechanisms of the molecular pathways in fibrosis induced by microRNAs // Chin. Med. J. 2016. V. 129. P. 2365–2372. https://doi.org/10.4103/0366-6999.190677
  51. Liu R.H., Ning B., Ma X.E. et al. Regulatory roles of microRNA-21 in fibrosis through interaction with diverse pathways // Mol. Med. Rep. 2016. V. 13. P. 2359–2366. https://doi.org/10.3892/mmr.2016.4834
  52. Zhao S., Li W., Yu W.T. et al. Exosomal miR-21 from tubular cells contributes to renal fibrosis by activating fibroblasts via targeting PTEN in obstructed kidneys // Theranostics. 2021. V. 11. P. 8660–8673. https://doi.org/10.7150/thno.62820
  53. Li D., Mao C., Zhou E. et al. MicroRNA-21 mediates a positive feedback on angiotensin II-induced myofibroblast transformation // J. Inflamm. Res. 2020. V. 13. P. 1007–1020. https://doi.org/10.2147/JIR.S285714
  54. Chen T., Li Z., Tu J. et al. MicroRNA-29a regulates pro-inflammatory cytokine secretion and scavenger receptor expression by targeting LPL in oxLDL-stimulated dendritic cells // FEBS Lett. 2011. V. 585. P. 657–663. https://doi.org/10.1016/j.febslet.2011.01.027
  55. Yuan R., Dai X., Li Y. et al. Exosomes from miR-29a-modified adipose-derived mesenchymal stem cells reduce excessive scar formation by inhibiting TGF-beta 2/Smad3 signaling // Mol. Med. Rep. 2021. V. 24. https://doi.org/10.3892/mmr.2021.12398
  56. Smyth A., Callaghan B., Willoughby C.E., O'Brien C. The role of miR-29 family in TGF-β driven fibrosis in glaucomatous optic neuropathy // Int. J. Mol. Sci. 2022. V. 23. https://doi.org/10.3390/ijms231810216
  57. Bouhlel M.A., Derudas B., Rigamonti E. et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties // Cell Metab. 2007. V. 6. P. 137–143. https://doi.org/10.1016/j.cmet.2007.06.010
  58. Peng X., He F., Mao Y. et al. miR-146a promotes M2 macrophage polarization and accelerates diabetic wound healing by inhibiting the TLR4/NF-κB axis // J. Mol. Endocrinol. 2022. V. 69. P. 315–327. https://doi.org/10.1530/JME-21-0019
  59. Yuan B.Y., Chen Y.H., Wu Z.F. et al. MicroRNA-146a-5p attenuates fibrosis-related molecules in irradiated and TGF-beta1-treated human hepatic stellate cells by regulating PTPRA-SRC signaling // Radiat. Res. 2019. V. 192. P. 621–629. https://doi.org/10.1667/RR15401.1
  60. Tu X., Zheng X., Li H. et al. MicroRNA-30 protects against carbon tetrachloride-induced liver fibrosis by attenuating transforming growth factor beta signaling in hepatic stellate cells // Toxicol. Sci. 2015. V. 146. № 1. P. 157–169. https://doi.org/10.1093/toxsci/kfv081
  61. Zhao S., Xiao X., Sun S. et al. MicroRNA-30d/JAG1 axis modulates pulmonary fibrosis through Notch signaling pathway // Pathol. Res. Pract. 2018. V. 214. P. 1315–1323. https://doi.org/10.1016/j.prp.2018.02.014
  62. Cui H., Banerjee S., Xie N. et al. MicroRNA-27a-3p Is a negative regulator of lung fibrosis by targeting myofibroblast differentiation // Am. J. Respir. Cell Mol. Biol. 2016. V. 54. P. 843–852. https://doi.org/10.1165/rcmb.2015-0205OC
  63. Fabian M.R., Sonenberg N., Filipowicz W. Regulation of mRNA translation and stability by microRNAs // Ann. Rev. Biochem. 2010. V. 79. P. 351–379. https://doi.org/10.1146/annurev-biochem-060308-103103
  64. Li C., Liu Y.F., Huang C. et al. Long noncoding RNA NEAT1 sponges miR-129 to modulate renal fibrosis by regulation of collagen type I // Am. J. Physiol. Renal. Physiol. 2020. V. 319. P. 93–105. https://doi.org/10.1152/ajprenal.00552.2019
  65. Zhu Y., Feng Z., Jian Z., Xiao Y. Long noncoding RNA TUG1 promotes cardiac fibroblast transformation to myofibroblasts via miR-29c in chronic hypoxia // Mol. Med. Rep. 2018. V. 18. P. 3451–3460. https://doi.org/10.3892/mmr.2018.9327
  66. Yu C.-C., Liao Y.-W., Hsieh P.-L., Chang Y.-C. Targeting lncRNA H19/miR-29b/COL1A1 axis impedes myofibroblast activities of precancerous oral submucous fibrosis // Int. J. Mol. Sci. 2021. V. 22. https://doi.org/10.3390/ijms22042216
  67. Zhang Y.Y., Tan R.Z., Yu Y., Niu Y.Y. LncRNA GAS5 protects against TGF-β-induced renal fibrosis via the Smad3/miRNA-142-5p // Am. J. Physiol. Renal Physiol. 2021. V. 321. № 4. P. 517–526. https://doi.org/10.1152/ajprenal.00085.2021
  68. Algeciras L., Palanca A., Maestro D. et al. Epigenetic alterations of TGF-β and its main canonical signaling mediators in the context of cardiac fibrosis // J. Mol. Cell Cardiol. 2021. V. 159. P. 38–47. https://doi.org/10.1016/j.yjmcc.2021.06.003
  69. Tang R., Wang Y.C., Mei X. LncRNA GAS5 attenuates fibroblast activation through inhibiting Smad3 signaling // Am. J. Physiol. Cell Physiol. 2020. V. 319. P. 105–115. https://doi.org/10.1152/ajpcell.00059.2020
  70. Fan Y., Zhao X., Ma J., Yang L. LncRNA GAS5 competitively combined with miR-21 regulates PTEN and influences EMT of peritoneal mesothelial cells via Wnt/β-Catenin signaling pathway // Front. Physiol. 2021. V. 12. https://doi.org/10.3389/fphys.2021.654951
  71. Zheng Q., Bao C., Guo W. et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs // Nat. Commun. 2016. V. 7. https://doi.org/10.1038/ncomms11215
  72. Li C., Meng X., Wang L., Dai X. Mechanism of action of non-coding RNAs and traditional Chinese medicine in myocardial fibrosis: Focus on the TGF-β/Smad signaling pathway // Front Pharmacol. 2023. V. 14. https://doi.org/10.3389/fphar.2023.1092148
  73. Su P., Qiao Q., Ji G., Zhang Z. CircAMD1 regulates proliferation and collagen synthesis via sponging miR-27a-3p in P63-mutant human dermal fibroblasts // Differentiation. 2021. V. 119. P. 10–18. https://doi.org/10.1016/j.diff.2021.04.002

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences