Сравнительный анализ мутаций в буккальном эпителии и крови у пациентов с раком легких и здоровых людей
- Авторы: Сержантова О.В.1,2, Новикова А.Г.1,2, Михайлов А.А.1, Мошуров И.П.1, Гуреев А.П.2
-
Учреждения:
- Воронежский областной клинический онкологический диспансер
- Воронежский государственный университет
- Выпуск: Том 60, № 5 (2024)
- Страницы: 66-82
- Раздел: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://ter-arkhiv.ru/0016-6758/article/view/667266
- DOI: https://doi.org/10.31857/S0016675824050053
- EDN: https://elibrary.ru/CJMKTT
- ID: 667266
Цитировать
Аннотация
Рак легких является одной из основных причин смерти от рака. Поиск новых методов ранней и точной диагностики рака легких имеет решающее значение для эффективного лечения. Мы показали, что у пациентов с раком легких в буккальном эпителии больше мутаций в генах FLT3, PDGFRA, KDR, PIK3CA, HRAS, FGFR3, чем у людей без диагностированного рака легких. Таким образом, изучение молекулярных изменений может быть использовано как метод точной диагностики рака легких на ранних стадиях исследования.
Ключевые слова
Полный текст

Об авторах
О. В. Сержантова
Воронежский областной клинический онкологический диспансер; Воронежский государственный университет
Email: gureev@bio.vsu.ru
Россия, Воронеж; Воронеж
А. Г. Новикова
Воронежский областной клинический онкологический диспансер; Воронежский государственный университет
Email: gureev@bio.vsu.ru
Россия, Воронеж; Воронеж
А. А. Михайлов
Воронежский областной клинический онкологический диспансер
Email: gureev@bio.vsu.ru
Россия, Воронеж
И. П. Мошуров
Воронежский областной клинический онкологический диспансер
Email: gureev@bio.vsu.ru
Россия, Воронеж
А. П. Гуреев
Воронежский государственный университет
Автор, ответственный за переписку.
Email: gureev@bio.vsu.ru
Россия, Воронеж
Список литературы
- Каприн А.Д., Старинский В.В., Шахзадова А.О. Злокачественные новообразования в России в 2019 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена − филиал ФГБУ “НМИЦ радиологии” Минздрава России 2020. 252 с.
- Wadowska K., Bil-Lula I., Trembecki Ł., Śliwińska-Mossoń M. Genetic Markers in Lung Cancer Diagnosis: A Review // Int. J. Mol. Sci. 2020. V. 21. № 13. https://doi.org/10.3390/ijms21134569
- Rodionov E.O., Tuzikov S.A., Miller S.V. et al. Methods for early detection of lung cancer (review) // Sib. J. Oncology. 2020. V. 19. № 4. P. 112–122. https://doi.org/10.21294/1814-4861-2020-19-4-112-122
- Nanavaty P., Alvarez M.S., Alberts W.M. Lung cancer screening: advantages, controversies, and applications // Cancer Control. 2014. V. 21. № 1. P. 9–14. https://doi.org/10.1177/107327481402100102
- Hubers A.J., Prinsen C.F., Sozzi G. et al. Molecular sputum analysis for the diagnosis of lung cancer // Br. J. Cancer. 2013. V. 109. № 3. P. 530–537. https://doi.org/10.1038/bjc.2013.393
- Ganeev A.A., Gubal A.R., Lukyano G.N. et al. Analysis of exhaled air for early-stage diagnosis of lung cancer: opportunities and challenges // Russ. Chemical Reviews. 2017. V. 87. № 9. P. 904–921. https://doi.org/10.1070/RCR4831
- Sidransky D. The oral cavity as a molecular mirror of lung carcinogenesis // Cancer Prev. Res. (Phila). 2008 V. 1. № 1. P. 12–14. https://doi.org/10.1158/1940-6207.CAPR-08-0093
- Bhutani N., Burns D.M., Blay H.M. DNA Demethylation dynamics // Cell. 2011. V.146. № 6. P. 866–872. https://doi.org/10.1016/j.cell.2011.08.042
- Kömerik N., Yüce E., Calapoğlu N.S. et al. Oral mucosa and lung cancer: Are genetic changes in the oral epithelium associated with lung cancer? // Nigerian J. Clin. Practice. 2017. V. 20. № 1. P. 12–18. https://doi.org/10.4103/1119-3077.181396
- Shtivelman E., Hensing T., Simon G.R. et al. Molecular pathways and therapeutic targets in lung cancer // Oncotarget. 2014. V. 5. № 6. P. 1392–1433. https://doi.org/10.18632/oncotarget.1891
- Collisson E.A., Campbell J.D., Brooks A.N. et al. The Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma // Nature. 2014. V. 511. P. 543–550. https://doi.org/10.1038/nature13385
- Imielinski M., Berger A.H., Hammerman P.S. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing // Cell. 2012. V. 150. № 6. P. 1107–1120. https://doi.org/10.1016/j.cell.2012.08.029
- Rodgers K. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma // Nature. 2018. V. 559. № 7715. https://doi.org/10.1038/s41586018-0228-6
- Levy M.A., Lovly C.M., Pao W. Translating genomic information into clinical medicine: lung cancer as a paradigm // Genome Res. 2012. V. 22. № 11. P. 2101–2108. https://doi.org/10.1101/gr.131128.111
- Drilon A., Wang L., Arcila M.E. et al. Broad, hybrid capture-based next-generation sequencing identifies actionable genomic alterations in lung adenocarcinomas otherwise negative for such alterations by other genomic testing approaches // Clin. Cancer Res. 2015. V. 21. № 16. P. 3631–3639. https://doi.org/10.1158/1078-0432.CCR-14-2683
- Liu L., Liu J., Shao D. et al. Comprehensive genomic profiling of lung cancer using a validated panel to explore therapeutic targets in East Asian patients // Cancer Sci. 2017. V. 108. № 12. P. 2487–2494. https://doi.org/10.1111/cas.13410
- Rooney M., Devarakonda S., Govindan R. Genomics of squamous cell lung cancer // Oncologist. 2013. V. 18. № 6. P. 707–716. https://doi.org/10.1634/theoncologist.2013-0063
- Rodgers K. Cancer genome atlas research network. Comprehensive genomic characterization of squamous cell lung cancers // Nature. 2012. V. 489. № 7417. P. 519–525. https://doi.org/10.1038/nature11404
- Kim Y., Hammerman P.S., Kim J. et al. Integrative and comparative genomic analysis of lung squamous cell carcinomas in East Asian patients // J. Clin. Oncol. 2014. V. 32. № 2. P. 121–128. https://doi.org/10.1200/JCO.2013.50.8556
- Wang R., Pan Y., Li C. et al. Analysis of major known driver mutations and prognosis in resected adenosquamous lung carcinomas // J. Thorac. Oncol. 2014. V. 9. № 6. P. 760–768. https://doi.org/10.1097/JTO.0b013e3182a406d1
- Voortman J., Lee J.H., Killian J.K. et al. Array comparative genomic hybridization-based characterization of genetic alterations in pulmonary neuroendocrine tumors // Proc. Natl Acad. Sci. U.S.A. 2010. V. 107. № 29. P. 13040–13045. https://doi.org/10.1073/pnas.1008132107
- Imielinski M., Berger A.H., Hammerman P.S. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing // Cell. 2012. V. 150. № 6. P. 1107–1120. https://doi.org/10.1016/j.cell.2012.08.029
- Zwick E., Bange J., Ullrich A. Receptor tyrosine kinase signalling as a target for cancer intervention strategies // Endocrine-Related Cancer J. 2001. V. 8. № 3. P. 161–173. https://doi.org/10.1677/erc.0.0080161
- Small D. FLT3 mutations: biology and treatment // Hematology. 2006. V. 1. P. 178–184. https://doi.org/10.1182/asheducation-2006.1.178
- Uscanga-Perales G.I., Santuario-Facio S.K., Sanchez-Dominguez C.N. et al. Genetic alterations of triple negative breast cancer (TNBC) in women from Northeastern Mexico // Oncol. Lett. 2019. V. 17. № 3. P. 3581–3588. https://doi.org/10.3892/ol.2019.9984
- Guo M., Tomoshige K., Meister M. et al. Gene signature driving invasive mucinous adenocarcinoma of the lung // EMBO Mol. Med. 2017. V. 9. № 4. P. 462–481. https://doi.org/10.15252/emmm.201606711
- Qiu Z., Ye B., Wang K. et al. Unique genetic characteristics and clinical prognosis of female patients with lung cancer harboring RET fusion gene // Sci. Rep. 2020. V. 10. № 10387. https://doi.org/10.1038/s41598-020-66883-0
- Zhuo Y.J., Shi Y., Wu T. NRP-1 and KDR polymorphisms are associated with survival time in patients with advanced gastric cancer // Oncol. Lett. 2019. V. 18. № 5. P. 4629–4638. https://doi.org/10.3892/ol.2019.10842
- Cebrián A., Gómez Del Pulgar T., Méndez-Vidal M.J. et al. Functional PTGS2 polymorphism-based models as novel predictive markers in metastatic renal cell carcinoma patients receiving first-line sunitinib // Sci. Rep. 2017. V. 7. № 41371. https://doi.org/10.1038/srep41371
- O’Brien T.J., Harralson A.F., Tran T. et al. Kinase insert domain receptor/vascular endothelial growth factor receptor 2 (KDR) genetic variation is associated with ovarian hyperstimulation syndrome // Reprod. Biol. Endocrinol. 2014. V. 12. № 36. https://doi.org/10.1186/1477-7827-12-36
- Jastania R.A., Saeed M., Al-Khalidi H. et al. Adamantinomatous craniopharyngioma in an adult: A case report with NGS analysis // Int. Med. Case Rep. J. 2020. V. 13. P. 123–137. https://doi.org/10.2147/IMCRJ.S243405
- Goriely A., Hansen R.M., Taylor I.B. et al. Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors // Nat. Genet. 2009. V. 41. № 11. P. 1247–1252. https://doi.org/10.1038/ng.470
- Рахимова С.Е., Саматкызы Д., Кожамкулов У.А. и др. Опыт применения панели для секвенирования следующего поколения AmpliSeq Cancer HotSpot v.2 у казахстанских пациентов с плоскоклеточным раком пищевода // Вестник Казахского Нац. Мед. Ун-та. 2020. № 3. С. 76–80.
- Tomei S., Adams S., Uccellini L. et al. Association between HRAS rs12628 and rs112587690 polymorphisms with the risk of melanoma in the North American population // Med. Oncol. 2012. V. 29. № 5. P. 3456–3461. https://doi.org/10.1007/s12032-012-0255-3
- Jin M., Li Z., Sun Y. et al. Association analysis between the interaction of RAS family genes mutations and papillary thyroid carcinoma in the Han Chinese population // Int. J. Med. Sci. 2021. V. 18. № 2. P. 441–447. https://doi.org/10.7150/ijms.50026
- Testa U., Castelli G., Pelosi E. Lung cancers: Molecular characterization, clonal heterogeneity and evolution, and cancer stem cells // Cancers (Basel). 2018. V. 10. № 8. https://doi.org/10.3390/cancers10080248
- Mogi A., Kuwano H. TP53 Mutations in nonsmall cell lung cancer // J. Biomedicine and Biotechnology. 2011. V. 2011. № 583929. https://doi.org/10.1155/2011/583929
- Tao D., Han X., Zhang N. et al. Genetic alteration profiling of patients with resected squamous cell lung carcinomas // Oncotarget. 2016. V. 7. № 24. P. 36590–36601. https://doi.org/10.18632/oncotarget.9096
- Scheffler M., Bos M., Gardizi M. et al. PIK3CA mutations in non-small cell lung cancer (NSCLC): Genetic heterogeneity, prognostic impact and incidence of prior malignancies // Oncotarget. 2015. V. 6. № 2. P. 1315–1326. https://doi.org/10.18632/oncotarget.2834
- Beenken A., Mohammadi M. The FGF family: biology, pathophysiology and therapy // Nat. Reviews. Drug Discovery. 2013. V. 8. № 3. P. 235–253. https://doi.org/10.1038/nrd2792
- Jing P., Zhao N., Xie N. et al. miR-24-3p/FGFR3 signaling as a novel axis Is involved in epithelial-mesenchymal transition and regulates lung adenocarcinoma progression // J. Immunol. Res. 2018. V. 2018. № 2834109. https://doi.org/10.1155/2018/2834109
- Gasche C., Chang C.L., Rhees J. et al. Oxidative stress increases frameshift mutations in human colorectal cancer cells // Cancer Research. 2001. V. 61. P. 7444–7448.
Дополнительные файлы
