Peculiarities of the formation of Dy/Co periodic multilayer systems upon magnetron sputtering

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

X-ray and magnetometry methods are used to show that, during magnetron sputtering of Dy/Co periodic multilayer systems, the DyCo2 and DyCo3 intermetallics form. The main reason for the phase formation of various intermetallics is the structural state of buffer layer, namely, its crystalline and amorphous state in the case of crystalline and glass substrate, respectively.

Full Text

Restricted Access

About the authors

G. V. Prutskov

National Research Center “Kurchatov Institute”

Email: makarova@imp.uran.ru
Russian Federation, Moscow, 123182

I. A. Subbotin

National Research Center “Kurchatov Institute”

Email: makarova@imp.uran.ru
Russian Federation, Moscow, 123182

E. A. Kravtsov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: makarova@imp.uran.ru
Russian Federation, Ekaterinburg, 620108; Ekaterinburg, 620002

M. V. Makarova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

Author for correspondence.
Email: makarova@imp.uran.ru
Russian Federation, Ekaterinburg, 620108; Ekaterinburg, 620002

M. A. Milyaev

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: makarova@imp.uran.ru
Russian Federation, Ekaterinburg, 620108; Ekaterinburg, 620002

E. M. Pashaev

National Research Center “Kurchatov Institute”

Email: makarova@imp.uran.ru
Russian Federation, Moscow, 123182

References

  1. Tudu B., Ashutosh T. Recent Developments in Perpendicular Magnetic Anisotropy Thin Films for Data Storage Applications // Vacuum. 2017. V. 146. P. 329–341.
  2. Mangin S., Gottwald M., Lambert C.-H., Steil D. Engineered materials for all-optical helicity-dependent magnetic switching // Nature Materials. 2014. V. 13. P. 286–292.
  3. Hansen P., Klahn S., Clausen C., Much G., Witter K. Magnetic and magneto-optical properties of rare-earth transition-metal alloys containing Dy, Ho, Fe, Co // J. Appl. Phys. 1991. V. 69. P. 3194–3207.
  4. Schubert C., Hassdenteufel A., Matthes P., Schmidt J., Helm M., Bratschitsch R., Albrecht M. All-optical helicitydependent magnetic switching in an artificial zero momentmagnet // Appl. Phys. Lett. 2014. V. 104. Р. 082406.
  5. Becker J., Tsukamoto A., Kirilyuk A., Maan J.C., Rasing T., Christianen P.C.M., Kimel A.V. Ultrafast Magnetism of a Ferrimagnet Across the Spin-Flop Transition in High Magnetic Fields // Phys. Rev. Lett. 2017. V. 118. Р. 117203.
  6. Savoini M., Medapalli R., Koene B., Khorsand A.R., Le Guyader L., Duò L., Finazzi M., Tsukamoto A., Itoh A., Nolting F., Kirilyuk A., Kimel A.V., Rasing Th. Highly efficient all-optical switching of magnetization in GdFeCo microstructures by interference-enhanced absorption of light // Phys. Rev. B. 2012. V. 86. P. 140404(R).
  7. Alebrand S., Gottwald M., Hehn M., Steil D., Cinchetti M., Lacour D., Fullerton E.E., Aeschlimann M., Mangin S. Light-induced magnetization reversal of high-anisotropy TbCo alloy films // Appl. Phys. Lett. 2012. V. 101. P. 162408.
  8. Shan Z.S., Sellmyer D.J. Magnetism of rare-earth–transition-metal nanoscale multilayers. I. Experiments on Dy/Co, Dy/Fe, and Tb/Fe // Phys. Rev. B. 1990. V. 42. P. 10433.
  9. Svalov A.V., Vas’kovskiy V.O., Kurlyandskaya G.V. Influence of the Size and Structural Factors on the Magnetism of Multilayer Films Based on 3d and 4f Metals // Phys. Met. Metal. 2017. V. 118. № 13. P. 1263–1299.
  10. Васьковский В.О. Магнетизм наносистем на основе редкоземельных и 3d-переходных металлов. Хрестоматия. Екатеринбург: УрГУ, 2007. 263 с.
  11. Макарова М.В., Кравцов Е.А., Проглядо В.В., Хайдуков Ю.Н., Устинов В.В. Структура и магнетизм сверхрешеток Co/Dy // ФТТ. 2020. Т. 62. № 9. С. 1499.
  12. Subbotin I.A., Pashaev E.M., Vasilev A.L., Chesnokov Yu.M., Prutskov G.V., Kravtsov E.A., Makarova M.V., Proglyado V.V., Ustinov V.V. The Influence of Microstructure on Perpendicular Magnetic Anisotropy in Co/Dy Periodic Multilayer Systems // Physica B: Condensed Matter. 2019. V. 573. P. 28–35.
  13. Nie H.B., Xu S.Y., Wang S.J., You L.P., Yang Z., Ong C.K., Li J., Liew T.Y.F. Structural and electrical properties of tantalum nitride thin films fabricated by using reactive radio-frequency magnetron sputtering // Applied Physics A. 2001. V. 73. P. 229–236.
  14. Mueller M.H. The lattice parameter of tantalum // Scripta Metallurgica. 1977. V. 11. P. 693–693.
  15. Okamoto H. Supplemental Literature Review of Binary Phase Diagrams: Ag-Ho, Ag-Tb, Ag-Y, Cd-Na, Ce-Sn, Co-Dy, Cu-Dy, Cu-Sn, Ir-Pt, Mg-Pb, Mo-Ni, and Sc-Y // Journal of Phase Equilibria and Diffusion. 2014. V. 35. No. 2. P. 150–156.
  16. Zuo J.D., Wang Y.Q., Wu K., Zhang J.Y., Liu G., and Sun J. Phase tailoring of Ta films via buffer layer thicknesses controlling // Scr. Mater. 2022. V. 212. P. 114582.
  17. Наумова Л.И., Заворницын Р.С., Миляев М.А., Девятериков Д.И., Русалина А.С., Криницина Т.П., Павлова А.Ю., Проглядо В.В., Устинов В.В. Гелимагнитная и кристаллографическая текстуры роста нанослоев диспрозия на буферных слоях Co90Fe10, Nb и β-Ta // ФММ. 2023. Т. 124. № 8. С. 692–702.
  18. Laguna-Marco M. A., Chaboy J., and Piquer C. Experimental determination of the R(5d)–T(3d) hybridization in rare-earth intermetallics // Phys. Rev. B. 2008. V. 77. P. 125132.
  19. Макарова М.В., Кравцов Е.А., Проглядо В.В., Субботин И.А., Пашаев Э.М., Холин Д.И., Хайдуков Ю.Н. Магнитная структура сверхрешеток Dy-Co вблизи температуры компенсации // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2023. № 4. С. 50–54.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Theoretical (solid) and experimental (dots) reflectometry curves for sample A and the residual curve σ. The inset shows a fragment of the curve in the range of 2.35–2.40 degrees.

Download (20KB)
3. Fig. 2. Theoretical (solid) and experimental (dots) reflectometry curves for sample B and the residual curve σ. The inset shows a fragment of the curve in the range of 2.51–2.64 degrees.

Download (22KB)
4. Fig. 3. Distribution profile of the real part of polarizability by depth for samples A (crystalline substrate) and B (amorphous substrate).

Download (39KB)
5. Fig. 4. Distribution profile of the real part of polarizability within one period. The dashed lines indicate the values ​​of the real part of polarizability for pure elements Dy, Co and the average value of the real part of polarizability for the Dy 2 nm/Co 3 nm system.

Download (18KB)
6. Fig. 5. Diffraction curves from samples A (crystalline substrate) and B (amorphous substrate) in 2θ-θ geometry.

Download (15KB)
7. Fig. 6. Diffraction curves from samples A and B in the glancing reflection geometry at ω = 1°. The lines on the abscissa axis correspond to bulk Dy and Co.

Download (36KB)
8. Fig. 7. Hysteresis loops for sample A with a crystalline Si substrate at different temperatures in a magnetic field directed perpendicular to the plane of the sample.

Download (32KB)
9. Fig. 8. Hysteresis loops for sample B with a substrate made of amorphous glass SiO2 at different temperatures in a magnetic field directed perpendicular to the plane of the sample.

Download (35KB)