The Microstructural State and Characteristics of the Deformation and Fracture, Energy Dissipation and Accumulation in Deformed Ultrafine-Grained Alloys Based on Titanium, Niobium, and Magnesium for Medical Applications

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of the study of the microstructure, physical and mechanical characteristics, processes of the energy dissipation and accumulation under tension in technical titanium and in Ti–45Nb, Mg–2.9Y–1.3Nd alloys in the coarse-grained (CG) and ultrafine-grained (UFG) states have been summarized. It has been found that substructural strengthening of ultrafine-grained technical titanium results in a change in deformation and thermal behavior, especially at the initial stage of deformation. It has been found that dispersion strengthening of Ti–45Nb alloy with the ω-phase nanoparticles and Mg24Y5 intermetallics, and of Mg–2.9Y–1.3Nd alloy with the β-, β′-, and β1-phase precipitates reduces the influence of the UFG structure on the patterns of energy accumulation and dissipation under tension at the initial stage of deformation.

全文:

受限制的访问

作者简介

Y. Sharkeev

Institute of Strength Physics and Materials Science (ISPMS) SB RAS; The National Research Tomsk Polytechnic University

Email: eroshenko@ispms.ru
俄罗斯联邦, Tomsk, 634055; Tomsk, 634050

Е. Legostaeva

Institute of Strength Physics and Materials Science (ISPMS) SB RAS

Email: eroshenko@ispms.ru
俄罗斯联邦, Tomsk, 634055

А. Eroshenko

Institute of Strength Physics and Materials Science (ISPMS) SB RAS

编辑信件的主要联系方式.
Email: eroshenko@ispms.ru
俄罗斯联邦, Tomsk, 634055

N. Luginin

Institute of Strength Physics and Materials Science (ISPMS) SB RAS; The National Research Tomsk Polytechnic University

Email: eroshenko@ispms.ru
俄罗斯联邦, Tomsk, 634055; Tomsk, 634050

A. Tolmachev

Institute of Strength Physics and Materials Science (ISPMS) SB RAS

Email: eroshenko@ispms.ru
俄罗斯联邦, Tomsk, 634055

P. Uvarkin

Institute of Strength Physics and Materials Science (ISPMS) SB RAS

Email: eroshenko@ispms.ru
俄罗斯联邦, Tomsk, 634055

参考

  1. Kaur M., Singh K. Review on titanium and titanium-based alloys as biomaterials for orthopedic applications // Mater. Sci. Eng. 2019. V. 102. P. 844–862.
  2. Xiaotian L., Shuyang C., Regen K.H. Binary titanium alloys as dental implant materials — a review. // Biomater. 2017. V. 4. № 5. P. 315–323.
  3. Valiev R.Z., Zhilyaev A.P., and Langdon T.G., Bulk Nanostructured Materials: Fundamentals and Applications. New Jersey: John Wiley & Sons, 2014. 440 p.
  4. Glezer A.M., Kozlov E.V., Koneva N.A., Popova N.A., Kurzina I.A. Plastic Deformation of Nanostructured Materials. Boca Raton, FL, USA: CRC Press, 2017. 334 p.
  5. Moyseychik E., Vavilov V., Kuimova M. Infrared thermographic assessment of heat release phenomena in steel parts subjected to quasi-static deformation // Measurement. 2021. V. 185. P. 110117.
  6. Oliferuk W., Gadaj S.P., Grabski M.W. Energy storage during the tensile deformation of Armco iron and austenitic steel // Mater. Sci. Eng. A. 1985. V. 70. P. 131–141.
  7. Bagavathiappan S., Lahiri B., Saravanan T., Philip J., Jayakumar T. Infrared thermography for condition monitoring — A review //Infrared Phys. Technol. 2013. V. 60. P. 35–55.
  8. Golasi´nski K.M., Staszczak M., Pieczyska E.A. Energy Storage and Dissipation in Consecutive Tensile Load-Unload Cycles of Gum Metal // Materials. 2023. V. 16. P. 3288.
  9. Sharkeev Yu., Eroshenko A., Legostaeva E., Kovalevskaya Z., Belyavskaya O., Khimich M., Epple M., Prymak O., Sokolova V., Zhu Q., Sun Z., Zhang H. Development of Ultrafine–Grained and Nanostructured Bioinert Alloys Based on Titanium, Zirconium and Niobium and Their Microstructure, Mechanical and Biological Properties // Metals. 2022. V. 12. № 7. P. 1136.
  10. Eroshenko A. Yu., Luginin N.A., Legostaeva E.V., Tolmachev A.I., Glukhov I.A., Uvarkin P.V., Sharkeev Yu.P., Schmidt J. Effect of Severe Plastic Deformation on Structure and Mechanical Properties of Magnesium Alloy Mg–Ca // AIP Conference Proceedings. 2022. V. 2509. P. 020068–1–020068–5.
  11. Sharkeev Y.P., Vavilov V.P., Chulkov A.O., Legostaeva E.V., Eroshenko A.Y., Belyavskaya O.A., Ustinov A.M., Skrypnyak V.A., Klopotov A.A., Kozulin A.A., Skrypnyak V.V., Zhilyakov A.Y., Kouznetsov V.P., Kuimova M.V. Research on the processes of deformation and failure in coarse- and ultrafine-grain states of Zr1–Nb alloys by digital image correlation and infrared thermography // Mater. Sci. Eng. A. 2020. V. 784. P. 139203.
  12. Martynenko N.S., Lukyanova E.A., Serebryany V.N. Increasing strength and ductility of magnesium alloy WE43 by equal-channel angular pressing // Mater. Sci. Eng. A. 2018. V. 712. P. 625–629.
  13. Плехов О., Чудинов В., Леонтьев В., Наймарк О. Экспериментальное исследование закономерностей диссипации энергии при динамическом деформировании нанокристаллического титана // ПЖТФ. 2009. T. 35. № 2. С. 82–90.
  14. Legostaeva E., Eroshenko A., Vavilov V., Skripnyak V.A., Chulkov A., Kozulin A., Skripnyak V.V., Glukhov I., Sharkeev Y. Comparative Investigation of the Influence of Ultrafine-Grained State on Deformation and Temperature Behavior and Microstructure Formed during Quasi-Static Tension of Pure Titanium and Ti-45Nb Alloy by Means of Infrared Thermography // Materials. 2022. V. 15. P. 8480.
  15. Ivanov A.M., Lukin E.S., Petrova N.D. Regularities of Deformation and Fracture of Steels Subjected to Equal Channel Angular Pressing and Thermal Processing // Mater. Sci. Forum. 2008. V. 584–586. P. 6436–6448.
  16. Gadaj S.P., Nowacki W.K., Pieczyska E.A. Changes of temperature during the simple shear test of stainless steel // Arch. Mech. 1996. V. 48. № 4. P. 779–788.
  17. Taylor G.I., Quinney H. The latent energy remaining in a metal after cold working // Proc. R. Soc. London, Ser. A. 1934. V. 143. P. 307–326.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Electron microscopic light-field (a, b) with corresponding microdifraction patterns (a, c) and dark-field (d) images of the titanium structure in the CC (a) and UMZ (b, c, d) states.

下载 (210KB)
3. Fig. 2. Electron microscopic light–field (a, b) with corresponding microdifraction patterns (a, c) and dark-field (d) images of the structure of the Ti-45Nb alloy in KK- (a) and UMZ-(b, c, d) states; Fig. 2b the dotted line highlights the rings corresponding to the GPU phase.

下载 (247KB)
4. Fig. 3. Optical (a, c) and electron microscopic light-field (b, d) images with corresponding microdifraction patterns (b, d) of the Mg–2.9Nd–1.3Y alloy structure in KK (a, b) and UMZ (c, d) states.

下载 (226KB)
5. 4. True deformation (a, d), temperature curves (b, e) and dependences of the coefficient of deformation hardening (c, e) for samples of titanium VT1-0 (curves 1), Ti–45Nb alloys (curves 2) and Mg–2.9Y–1.3Nd (curves 3) in KK- (a–b) and UMZ- (g–e) states.

下载 (284KB)
6. 5. Dependences of the energies during deformation on the true deformation for samples of titanium VT1-0 (curves 1), Ti–45Nb alloys (curves 2) and Mg–2.9Y–1.3Nd (curves 3) in the KK (a–b) and UMZ (g–e) states: a, d is the specific work of plastic deformation (Ar); b, e is the specific amount of heat released during deformation (Q); c, e is the absorbed energy during deformation (Es).

下载 (268KB)