Evaluation of the Possibility of Using the Registration of Fluorescence of Stained Cells Isolated from the Skin to Study the Severity of Oxidative Stress
- Authors: Romodin L.A1,2, Moskovskij A.A1,2, Chelarskaya E.S1, Sodboev C.C1, Nikitenko O.V1,3, Bychkova T.M1,3, Mitrofanova A.V1, Pustovoit V.I1
-
Affiliations:
- State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of Russia
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
- SSC RF Institute of Biomedical Problems, Russian Academy of Sciences
- Issue: Vol 70, No 5 (2025)
- Pages: 1002-1010
- Section: Medical biophysics
- URL: https://ter-arkhiv.ru/0006-3029/article/view/695417
- DOI: https://doi.org/10.31857/S0006302925050166
- ID: 695417
Cite item
Abstract
About the authors
L. A Romodin
State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: rla2904@mail.ru
Moscow, Russia
A. A Moskovskij
State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)Moscow, Russia; Moscow, Russia
E. S Chelarskaya
State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of RussiaMoscow, Russia
C. C Sodboev
State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of RussiaMoscow, Russia
O. V Nikitenko
State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of Russia; SSC RF Institute of Biomedical Problems, Russian Academy of SciencesMoscow, Russia; Moscow, Russia
T. M Bychkova
State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of Russia; SSC RF Institute of Biomedical Problems, Russian Academy of SciencesMoscow, Russia; Moscow, Russia
A. V Mitrofanova
State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of RussiaMoscow, Russia
V. I Pustovoit
State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of RussiaMoscow, Russia
References
- Bakic M., Klisic A., Kocic G., Kocic H., and Karanikolic V. Oxidative stress and metabolic biomarkers in patients with Psoriasis. J. Med. Biochem., 43 (1), 97– 105 (2024). doi: 10.5937/jomb0-45076
- Gocer Gurok N., Telo S., Genc Ulucan B., and Ozturk S. Oxidative stress in Psoriasis vulgaris patients: Analysis of asymmetric dimethylarginine, malondialdehyde, and glutathione levels. Medicina, 61 (6), 967 (2025). doi: 10.3390/medicina61060967
- Kvedariene V., Vaskovic M., and Semyte J. B. Role of oxidative stress and antioxidants in the course of atopic dermatitis. Int. J. Mol. Sci., 26 (9), 4210 (2025). doi: 10.3390/ijms26094210
- Luo Y., Hu J., Zhou Z., Zhang Y., Wu Y., and Sun J. Oxidative stress products and managements in atopic dermatitis. Front. Medicine, 12, 1538194 (2025). doi: 10.3389/fmed.2025.1538194
- Khalid-Meften A., Liaghat M., Yazdanpour M., NabiAfjadi M., Hosseini A., and Bahreini E. The effect of monobenzone cream on oxidative stress and its relationship with serum levels of IL-1beta and IL-18 in vitiligo patients. J. Cosmetic Dermatol., 23 (12), 4085–4093 (2024). doi: 10.1111/jocd.16544
- Lin Y., Ding Y., Wu Y., Yang Y., Liu Z., Xiang L., and Zhang C. The underestimated role of mitochondria in vitiligo: From oxidative stress to inflammation and cell death. Exp. Dermatol., 33 (1), e14856 (2024). doi: 10.1111/exd.14856
- Wu T., Chen X., Fan J., Ye P., Zhang J., Wang Z., Zhou Y., Wang B., Jin X., Xiong S., Gao S., Chang Y., Li C., and Jian Z. Oxidative stress-induced release of mitochondrial DNA (mtDNA) promotes the progression of vitiligo by activating the cGAS-STING signaling pathway in monocytes. Free Radic. Biol. Med., 235, 43–55 (2025). doi: 10.1016/j.freeradbiomed.2025.04.033
- Balik Z. B., Balik A. R., Oguz E. F., Erel O., and Tunca M. Evaluation of thiol disulfide homeostasis and ischemia-modified albumin levels as an indicator of oxidative stress in Acne vulgaris. Dermatol. Practical Conceptual, 13 (4), e2023280 (2023). doi: 10.5826/dpc.1304a280
- Bungau A. F., Radu A. F., Bungau S. G., Vesa C. M., Tit D. M., and Endres L. M. Oxidative stress and metabolic syndrome in acne vulgaris: Pathogenetic connections and potential role of dietary supplements and phytochemicals. Biomed. Pharmacotherapy. 164, 115003 (2023). doi: 10.1016/j.biopha.2023.115003
- Su L., Wang F., Wang Y., Qin C., Yang X., and Ye J. Circulating biomarkers of oxidative stress in people with acne vulgaris: a systematic review and meta-analysis. Arch. Dermatol. Res., 316 (4), 105 (2024). doi: 10.1007/s00403-024-02840-5
- Singh H., and Pritchard E. T. Factors affecting the thiobarbituric acid (TBA) test for lipid peroxidation in rat tissue homogenates. Canad. J. Biochem. Physiol., 40, 317– 318 (1962).
- Ruottinen M., Kuosmanen V., Saimanen I., Kaaronen V., Rahkola D., Holopainen A., Selander T., Kokki H., Kokki M., and Eskelinen M. The Rectus Sheath Block (RSB) analgesia following laparotomy could affect malonidialdehyde (MDA) concentrations in benign disease and cancer. Anticancer Res., 40 (1), 253–259 (2020). doi: 10.21873/anticanres.13947
- Бельская Л. В., Косенок В. К., Массард Ж. и Завьялов А. А. Состояние показателей липопероксидации и эндогенной интоксикации у больных раком легкого. Вестн. РАМН, 71 (4), 313–322 (2016). doi: 10.15690/vramn712
- Login C. C., Baldea I., Tiperciuc B., Benedec D., Vodnar D. C., Decea N., and Suciu S. A novel thiazolyl Schiff base: Antibacterial and antifungal effects and in vitro oxidative stress modulation on human endothelial cells. Oxid. Med. Cell. Longevity, 2019, 1607903 (2019). doi: 10.1155/2019/1607903
- Тарасов С. С. и Корякин А. С. Содержание продуктов перекисного окисления липидов и антиоксидантных ферментов в плазме крови сукрольных и лактирующих самок кролика. Вестн. Пермского университета. Сер.: Биология, 3, 292–296 (2016).
- Shaw S., Rubin K. P., and Lieber C. S. Depressed hepatic glutathione and increased diene conjugates in alcoholic liver disease. Evidence of lipid peroxidation. Digestive Dis. Sci., 28 (7), 585–589 (1983). doi: 10.1007/bf01299917
- Меньщикова Е. Б., Зенков Н. К. и Ланкин В. З. Окислительный стресс. Патологические состояния и заболевания (АРТА, Новосибирск, 2008).
- Pardo-Pena K., Sanchez-Lira A., Salazar-Sanchez J. C., and Morales-Villagran A. A novel online fluorescence method for in-vivo measurement of hydrogen peroxide during oxidative stress produced in a temporal lobe epilepsy model. Neuroreport, 29 (8), 621–630 (2018). doi: 10.1097/WNR.0000000000001007
- Mondal S., Kumar V., and Singh S. P. Oxidative stress measurement in different morphological forms of wildtype and mutant cyanobacterial strains: Overcoming the limitation of fluorescence microscope-based method. Ecotoxicol. Environ. Safety, 200, 110730 (2020). doi: 10.1016/j.ecoenv.2020.110730
- Jun Y. W., Albarran E., Wilson D. L., Ding J., and Kool E. T. Fluorescence imaging of mitochondrial DNA base excision repair reveals dynamics of oxidative stress responses. Angewandte Chemie, 61 (6), Art. e202111829 (2022). doi: 10.1002/anie.202111829
- Блохина Т. М., Иванов А. А., Воробьёва Н. Ю., Яшкина Е. И., Никитенко О. В., Бычкова Т. М., Молоканов А. Г., Тимошенко Г. Н., Бушманов А. Ю., Самойлов А. С. и Осипов А. Н. Повреждение ДНК спленоцитов мышей при воздействии вторичного излучения, формирующегося при прохождении пучка 650 МэВ протонов через бетонную преграду. Бюл. эксперим. биологии и медицины, 174 (8), 154–159 (2022). doi: 10.47056/0365-9615-2022-174-8-154-159
- Kumar S. S., Shankar B., and Sainis K. B. Effect of chlorophyllin against oxidative stress in splenic lymphocytes in vitro and in vivo. Biochim. Biophys. Acta, 1672 (2), 100–111 (2004). doi: 10.1016/j.bbagen.2004.03.002
- Selvan G. T., Ashok A. K., Rao S. J. A., Gollapalli P., Vishakh R., Shukhetha K. N., and Chaudhury N. K. Nrf2-regulated antioxidant response ameliorating ionizing radiation-induced damages explored through in vitro and molecular dynamics simulations. J. Biomol. Structure Dynamics, 41 (17), 8472—8484 (2023). doi: 10.1080/07391102.2022.2137245
- Li W., Wang L., Shen C., Xu T., Chu Y., and Hu C. Radiation therapy-induced reactive oxygen species specifically eliminates CD19(+)IgA(+) B cells in nasopharyngeal carcinoma. Cancer Management Res., 11, 6299–6309 (2019). doi: 10.2147/CMAR.S202375
- Jia R., Chen Y., Jia C., Hu B., and Du Y. Suppression of innate immune signaling molecule, MAVS, reduces radiation-induced bystander effect. Int. J. Radiat. Biol., 97 (1), 102–110 (2021). doi: 10.1080/09553002.2020.1807642
- Zielonka J. and Kalyanaraman B. "ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis"—critical commentary. Free Radic. Biol. Med., 45 (9), 1217–1219 (2008). doi: 10.1016/j.freeradbiomed.2008.07.025
- Kalyanaraman B., Darley-Usmar V., Davies K.J., Dennery P. A., Forman H. J., Grisham M. B., Mann G. E., Moore K., Roberts L. J. 2nd, and Ischiropoulos H. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic. Biol. Med., 52 (1), 1–6 (2012). doi: 10.1016/j.freeradbiomed.2011.09.030
- Fu J. Y., Jing Y., Xiao Y. P., Wang X. H., Guo Y. W., and Zhu Y. J. Astaxanthin inhibiting oxidative stress damage of placental trophoblast cells in vitro. Systems Biol. Reprod. Med., 67 (1), 79–88 (2021). doi: 10.1080/19396368.2020.1824031
- Tzankova V., Aluani D., Yordanov Y., Valoti M., Frosini M., Spassova I., Kovacheva D., and Tzankov B. In vitro toxicity evaluation of lomefloxacin-loaded MCM-41 mesoporous silica nanoparticles. Drug Chem. Toxicol., 44 (3), 238–249 (2021). doi: 10.1080/01480545.2019.1571503
- Sritharan S. and Sivalingam N. Curcumin induced apoptosis is mediated through oxidative stress in mutated p53 and wild type p53 colon adenocarcinoma cell lines. J. Biochem. Mol. Toxicol., 35 (1), e22616 (2021). doi: 10.1002/jbt.22616
- Shanmugasundaram D. and Roza J. M. Assessment of anti-inflammatory and antioxidant activity of quercetinrutin blend (SophorOx) – an in vitro cell based assay. J. Complement. Integr. Med., 19 (3), 637–644 (2022). doi: 10.1515/jcim-2021-0568
- Emami F., Aliomrani M., Tangestaninejad S., Kazemian H., Moradi M., and Rostami M. Copper-curcumin-bipyridine dicarboxylate complexes as anticancer candidates. Chem. Biodiversity, 19 (10), e202200202 (2022). doi: 10.1002/cbdv.202200202
- Rani S., Sahoo R. K., Kumar V., Chaurasiya A., Kulkarni O., Mahale A., Katke S., Kuche K., Yadav V., Jain S., Nakhate K. T., Ajazuddin, and Gupta U. N-2Hydroxypropylmethacrylamide-polycaprolactone polymeric micelles in co-delivery of proteasome inhibitor and polyphenol: exploration of synergism or antagonism. Mol. Pharmaceut., 20 (1), 524–544 (2023). doi: 10.1021/acs.molpharmaceut.2c00752
- Lam P. L., Wong M. M., Hung L. K., Yung L. H., Tang J. C., Lam K. H., Chung P. Y., Wong W. Y., Ho Y. W., Wong R. S., Gambari R., and Chui C. H. Miconazole and terbinafine induced reactive oxygen species accumulation and topical toxicity in human keratinocytes. Drug Chem. Toxicol., 45 (2), 834–838 (2022). doi: 10.1080/01480545.2020.1778019
- Dinarvand M., Sharifnia F., and Jangravi Z. Reactive oxygen species (ROS) are a crucial factor in the anticancer activity of Oliveria decumbens extract against the A431 human skin cell line. Arch. Razi Institute, 79 (4), 749–754 (2024). doi: 10.32592/ARI.2024.79.4.749
- Mussard E., Jousselin S., Cesaro A., Legrain B., Lespessailles E., Esteve E., Berteina-Raboin S., and Toumi H. Andrographis Paniculata and its bioactive diterpenoids protect dermal fibroblasts against inflammation and oxidative stress. Antioxidants, 9 (5), 530 (2020). doi: 10.3390/antiox9050432
- Ромодин Л. А. Способ оценки влияния веществ на выраженность вызванного облучением окислительного стресса на адсорбционных культурах клеток с использованием планшетного ридера. Патент РФ № 2842069. Заявлен 01.07.2024, опубликован 19.06.2025.
- Ромодин Л. А. Влияние тролокса, рибоксина (инозина) и индралина на индуцированный воздействием рентгеновского излучения окислительный стресс в клетках линии A549. Уч. записки Казанского университета. Сер. Естественные науки, 167 (1), 66–86 (2025). doi: 10.26907/2542-064X.2025.1.66-86
- Ромодин Л. А. и Московский А. А. Оценка влияния аскорбиновой, яблочной и янтарной кислот на радиационно-индуцированный окислительный стресс в клетках линии А549. Мед. радиология и радиац. безопасность, 69 (5), 21–27 (2024). doi: 10.33266/1024-6177-2024-69-5-21-27
- Tanaka R., Fujita M., Tsuruta R., Fujimoto K., Aki H. S., Kumagai K., Aoki T., Kobayashi A., Izumi T., Kasaoka S., Yuasa M., and Maekawa T. Urinary trypsin inhibitor suppresses excessive generation of superoxide anion radical, systemic inflammation, oxidative stress, and endothelial injury in endotoxemic rats. Inflam. Res., 59 (8), 597–606 (2010). doi: 10.1007/s00011-010-0166-8
- Silva M. S., Ribeiro S. F., Taveira G. B., Rodrigues R., Fernandes K. V., Carvalho A. O., Vasconcelos I. M., Mello E. O., and Gomes V. M. Application and bioactive properties of CaTI, a trypsin inhibitor from Capsicum annuum seeds: membrane permeabilization, oxidative stress and intracellular target in phytopathogenic fungi cells. J. Sci. Food Agriculture, 97 (11), 3790–3801 (2017). doi: 10.1002/jsfa.8243
- Jia Z., Wang P., Xu Y., Feng G., Wang Q., He X., Song Y., Liu P., and Chen J. Trypsin inhibitor LH011 inhibited DSS-induced mice colitis via alleviating inflammation and oxidative stress. Front. Pharmacol., 13, Art. 986510 (2022). doi: 10.3389/fphar.2022.986510
- Nsimba R. Y., Kikuzaki H., and Konishi Y. Ecdysteroids act as inhibitors of calf skin collagenase and oxidative stress. J. Biochem. Mol. Toxicol., 22 (4), 240–250 (2008). doi: 10.1002/jbt.20234
- Schock B. C., Sweet D. G., Ennis M., Warner J. A., Young I. S., and Halliday H. L. Oxidative stress and increased type-IV collagenase levels in bronchoalveolar lavage fluid from newborn babies. Pediatric Res., 50 (1), 29– 33 (2001). doi: 10.1203/00006450-200107000-00008
Supplementary files




