Evaluation of the Possibility of Using the Registration of Fluorescence of Stained Cells Isolated from the Skin to Study the Severity of Oxidative Stress

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Oxidative stress is a key link in the development of many pathological processes. Fluorescent dyes sensitive to reactive oxygen species, in particular dichlorofluorescein and its derivatives, are widely used for its evaluation. These dyes are actively used in works on cell cultures, but there is very little data on their use for the analysis of cells isolated directly from animal tissues. The present study was devoted to the investigation of the possibility of using 6-carboxy-dichlorofluorescein to register oxidative stress in cells isolated from rat skin flaps. To induce reactive oxygen species, skin fragments were incubated in a medium with hydrogen peroxide, after which cell suspensions were prepared from them. The cells were stained with 6-carboxy-dichlorofluorescein and Hoechst 33342, which allowed the fluorescent signal to be normalized by the number of cells in the sample. In separate experiments, the precursor of 6-carboxy-dichlorofluorescein was injected intradermical to live animals. Evaluation of the fluorescence ratio of 6-carboxy-2',7'-dichlorofluorescein and Hoechst 33342 showed the possibility of registering only pronounced oxidative stress, while it was not possible to distinguish its degree or record low-intensity changes. Additionally, microscopic analysis revealed the presence of cellular aggregates and fragments of the intercellular matrix, which reduced the reliability of the results. The data obtained indicate the limitations of the method of staining skin cells with dichlorofluorescein derivatives to assess the intensity of oxidative stress in native tissue.

About the authors

L. A Romodin

State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: rla2904@mail.ru
Moscow, Russia

A. A Moskovskij

State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Moscow, Russia; Moscow, Russia

E. S Chelarskaya

State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of Russia

Moscow, Russia

C. C Sodboev

State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of Russia

Moscow, Russia

O. V Nikitenko

State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of Russia; SSC RF Institute of Biomedical Problems, Russian Academy of Sciences

Moscow, Russia; Moscow, Russia

T. M Bychkova

State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of Russia; SSC RF Institute of Biomedical Problems, Russian Academy of Sciences

Moscow, Russia; Moscow, Russia

A. V Mitrofanova

State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of Russia

Moscow, Russia

V. I Pustovoit

State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan, FMBA of Russia

Moscow, Russia

References

  1. Bakic M., Klisic A., Kocic G., Kocic H., and Karanikolic V. Oxidative stress and metabolic biomarkers in patients with Psoriasis. J. Med. Biochem., 43 (1), 97– 105 (2024). doi: 10.5937/jomb0-45076
  2. Gocer Gurok N., Telo S., Genc Ulucan B., and Ozturk S. Oxidative stress in Psoriasis vulgaris patients: Analysis of asymmetric dimethylarginine, malondialdehyde, and glutathione levels. Medicina, 61 (6), 967 (2025). doi: 10.3390/medicina61060967
  3. Kvedariene V., Vaskovic M., and Semyte J. B. Role of oxidative stress and antioxidants in the course of atopic dermatitis. Int. J. Mol. Sci., 26 (9), 4210 (2025). doi: 10.3390/ijms26094210
  4. Luo Y., Hu J., Zhou Z., Zhang Y., Wu Y., and Sun J. Oxidative stress products and managements in atopic dermatitis. Front. Medicine, 12, 1538194 (2025). doi: 10.3389/fmed.2025.1538194
  5. Khalid-Meften A., Liaghat M., Yazdanpour M., NabiAfjadi M., Hosseini A., and Bahreini E. The effect of monobenzone cream on oxidative stress and its relationship with serum levels of IL-1beta and IL-18 in vitiligo patients. J. Cosmetic Dermatol., 23 (12), 4085–4093 (2024). doi: 10.1111/jocd.16544
  6. Lin Y., Ding Y., Wu Y., Yang Y., Liu Z., Xiang L., and Zhang C. The underestimated role of mitochondria in vitiligo: From oxidative stress to inflammation and cell death. Exp. Dermatol., 33 (1), e14856 (2024). doi: 10.1111/exd.14856
  7. Wu T., Chen X., Fan J., Ye P., Zhang J., Wang Z., Zhou Y., Wang B., Jin X., Xiong S., Gao S., Chang Y., Li C., and Jian Z. Oxidative stress-induced release of mitochondrial DNA (mtDNA) promotes the progression of vitiligo by activating the cGAS-STING signaling pathway in monocytes. Free Radic. Biol. Med., 235, 43–55 (2025). doi: 10.1016/j.freeradbiomed.2025.04.033
  8. Balik Z. B., Balik A. R., Oguz E. F., Erel O., and Tunca M. Evaluation of thiol disulfide homeostasis and ischemia-modified albumin levels as an indicator of oxidative stress in Acne vulgaris. Dermatol. Practical Conceptual, 13 (4), e2023280 (2023). doi: 10.5826/dpc.1304a280
  9. Bungau A. F., Radu A. F., Bungau S. G., Vesa C. M., Tit D. M., and Endres L. M. Oxidative stress and metabolic syndrome in acne vulgaris: Pathogenetic connections and potential role of dietary supplements and phytochemicals. Biomed. Pharmacotherapy. 164, 115003 (2023). doi: 10.1016/j.biopha.2023.115003
  10. Su L., Wang F., Wang Y., Qin C., Yang X., and Ye J. Circulating biomarkers of oxidative stress in people with acne vulgaris: a systematic review and meta-analysis. Arch. Dermatol. Res., 316 (4), 105 (2024). doi: 10.1007/s00403-024-02840-5
  11. Singh H., and Pritchard E. T. Factors affecting the thiobarbituric acid (TBA) test for lipid peroxidation in rat tissue homogenates. Canad. J. Biochem. Physiol., 40, 317– 318 (1962).
  12. Ruottinen M., Kuosmanen V., Saimanen I., Kaaronen V., Rahkola D., Holopainen A., Selander T., Kokki H., Kokki M., and Eskelinen M. The Rectus Sheath Block (RSB) analgesia following laparotomy could affect malonidialdehyde (MDA) concentrations in benign disease and cancer. Anticancer Res., 40 (1), 253–259 (2020). doi: 10.21873/anticanres.13947
  13. Бельская Л. В., Косенок В. К., Массард Ж. и Завьялов А. А. Состояние показателей липопероксидации и эндогенной интоксикации у больных раком легкого. Вестн. РАМН, 71 (4), 313–322 (2016). doi: 10.15690/vramn712
  14. Login C. C., Baldea I., Tiperciuc B., Benedec D., Vodnar D. C., Decea N., and Suciu S. A novel thiazolyl Schiff base: Antibacterial and antifungal effects and in vitro oxidative stress modulation on human endothelial cells. Oxid. Med. Cell. Longevity, 2019, 1607903 (2019). doi: 10.1155/2019/1607903
  15. Тарасов С. С. и Корякин А. С. Содержание продуктов перекисного окисления липидов и антиоксидантных ферментов в плазме крови сукрольных и лактирующих самок кролика. Вестн. Пермского университета. Сер.: Биология, 3, 292–296 (2016).
  16. Shaw S., Rubin K. P., and Lieber C. S. Depressed hepatic glutathione and increased diene conjugates in alcoholic liver disease. Evidence of lipid peroxidation. Digestive Dis. Sci., 28 (7), 585–589 (1983). doi: 10.1007/bf01299917
  17. Меньщикова Е. Б., Зенков Н. К. и Ланкин В. З. Окислительный стресс. Патологические состояния и заболевания (АРТА, Новосибирск, 2008).
  18. Pardo-Pena K., Sanchez-Lira A., Salazar-Sanchez J. C., and Morales-Villagran A. A novel online fluorescence method for in-vivo measurement of hydrogen peroxide during oxidative stress produced in a temporal lobe epilepsy model. Neuroreport, 29 (8), 621–630 (2018). doi: 10.1097/WNR.0000000000001007
  19. Mondal S., Kumar V., and Singh S. P. Oxidative stress measurement in different morphological forms of wildtype and mutant cyanobacterial strains: Overcoming the limitation of fluorescence microscope-based method. Ecotoxicol. Environ. Safety, 200, 110730 (2020). doi: 10.1016/j.ecoenv.2020.110730
  20. Jun Y. W., Albarran E., Wilson D. L., Ding J., and Kool E. T. Fluorescence imaging of mitochondrial DNA base excision repair reveals dynamics of oxidative stress responses. Angewandte Chemie, 61 (6), Art. e202111829 (2022). doi: 10.1002/anie.202111829
  21. Блохина Т. М., Иванов А. А., Воробьёва Н. Ю., Яшкина Е. И., Никитенко О. В., Бычкова Т. М., Молоканов А. Г., Тимошенко Г. Н., Бушманов А. Ю., Самойлов А. С. и Осипов А. Н. Повреждение ДНК спленоцитов мышей при воздействии вторичного излучения, формирующегося при прохождении пучка 650 МэВ протонов через бетонную преграду. Бюл. эксперим. биологии и медицины, 174 (8), 154–159 (2022). doi: 10.47056/0365-9615-2022-174-8-154-159
  22. Kumar S. S., Shankar B., and Sainis K. B. Effect of chlorophyllin against oxidative stress in splenic lymphocytes in vitro and in vivo. Biochim. Biophys. Acta, 1672 (2), 100–111 (2004). doi: 10.1016/j.bbagen.2004.03.002
  23. Selvan G. T., Ashok A. K., Rao S. J. A., Gollapalli P., Vishakh R., Shukhetha K. N., and Chaudhury N. K. Nrf2-regulated antioxidant response ameliorating ionizing radiation-induced damages explored through in vitro and molecular dynamics simulations. J. Biomol. Structure Dynamics, 41 (17), 8472—8484 (2023). doi: 10.1080/07391102.2022.2137245
  24. Li W., Wang L., Shen C., Xu T., Chu Y., and Hu C. Radiation therapy-induced reactive oxygen species specifically eliminates CD19(+)IgA(+) B cells in nasopharyngeal carcinoma. Cancer Management Res., 11, 6299–6309 (2019). doi: 10.2147/CMAR.S202375
  25. Jia R., Chen Y., Jia C., Hu B., and Du Y. Suppression of innate immune signaling molecule, MAVS, reduces radiation-induced bystander effect. Int. J. Radiat. Biol., 97 (1), 102–110 (2021). doi: 10.1080/09553002.2020.1807642
  26. Zielonka J. and Kalyanaraman B. "ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis"—critical commentary. Free Radic. Biol. Med., 45 (9), 1217–1219 (2008). doi: 10.1016/j.freeradbiomed.2008.07.025
  27. Kalyanaraman B., Darley-Usmar V., Davies K.J., Dennery P. A., Forman H. J., Grisham M. B., Mann G. E., Moore K., Roberts L. J. 2nd, and Ischiropoulos H. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic. Biol. Med., 52 (1), 1–6 (2012). doi: 10.1016/j.freeradbiomed.2011.09.030
  28. Fu J. Y., Jing Y., Xiao Y. P., Wang X. H., Guo Y. W., and Zhu Y. J. Astaxanthin inhibiting oxidative stress damage of placental trophoblast cells in vitro. Systems Biol. Reprod. Med., 67 (1), 79–88 (2021). doi: 10.1080/19396368.2020.1824031
  29. Tzankova V., Aluani D., Yordanov Y., Valoti M., Frosini M., Spassova I., Kovacheva D., and Tzankov B. In vitro toxicity evaluation of lomefloxacin-loaded MCM-41 mesoporous silica nanoparticles. Drug Chem. Toxicol., 44 (3), 238–249 (2021). doi: 10.1080/01480545.2019.1571503
  30. Sritharan S. and Sivalingam N. Curcumin induced apoptosis is mediated through oxidative stress in mutated p53 and wild type p53 colon adenocarcinoma cell lines. J. Biochem. Mol. Toxicol., 35 (1), e22616 (2021). doi: 10.1002/jbt.22616
  31. Shanmugasundaram D. and Roza J. M. Assessment of anti-inflammatory and antioxidant activity of quercetinrutin blend (SophorOx) – an in vitro cell based assay. J. Complement. Integr. Med., 19 (3), 637–644 (2022). doi: 10.1515/jcim-2021-0568
  32. Emami F., Aliomrani M., Tangestaninejad S., Kazemian H., Moradi M., and Rostami M. Copper-curcumin-bipyridine dicarboxylate complexes as anticancer candidates. Chem. Biodiversity, 19 (10), e202200202 (2022). doi: 10.1002/cbdv.202200202
  33. Rani S., Sahoo R. K., Kumar V., Chaurasiya A., Kulkarni O., Mahale A., Katke S., Kuche K., Yadav V., Jain S., Nakhate K. T., Ajazuddin, and Gupta U. N-2Hydroxypropylmethacrylamide-polycaprolactone polymeric micelles in co-delivery of proteasome inhibitor and polyphenol: exploration of synergism or antagonism. Mol. Pharmaceut., 20 (1), 524–544 (2023). doi: 10.1021/acs.molpharmaceut.2c00752
  34. Lam P. L., Wong M. M., Hung L. K., Yung L. H., Tang J. C., Lam K. H., Chung P. Y., Wong W. Y., Ho Y. W., Wong R. S., Gambari R., and Chui C. H. Miconazole and terbinafine induced reactive oxygen species accumulation and topical toxicity in human keratinocytes. Drug Chem. Toxicol., 45 (2), 834–838 (2022). doi: 10.1080/01480545.2020.1778019
  35. Dinarvand M., Sharifnia F., and Jangravi Z. Reactive oxygen species (ROS) are a crucial factor in the anticancer activity of Oliveria decumbens extract against the A431 human skin cell line. Arch. Razi Institute, 79 (4), 749–754 (2024). doi: 10.32592/ARI.2024.79.4.749
  36. Mussard E., Jousselin S., Cesaro A., Legrain B., Lespessailles E., Esteve E., Berteina-Raboin S., and Toumi H. Andrographis Paniculata and its bioactive diterpenoids protect dermal fibroblasts against inflammation and oxidative stress. Antioxidants, 9 (5), 530 (2020). doi: 10.3390/antiox9050432
  37. Ромодин Л. А. Способ оценки влияния веществ на выраженность вызванного облучением окислительного стресса на адсорбционных культурах клеток с использованием планшетного ридера. Патент РФ № 2842069. Заявлен 01.07.2024, опубликован 19.06.2025.
  38. Ромодин Л. А. Влияние тролокса, рибоксина (инозина) и индралина на индуцированный воздействием рентгеновского излучения окислительный стресс в клетках линии A549. Уч. записки Казанского университета. Сер. Естественные науки, 167 (1), 66–86 (2025). doi: 10.26907/2542-064X.2025.1.66-86
  39. Ромодин Л. А. и Московский А. А. Оценка влияния аскорбиновой, яблочной и янтарной кислот на радиационно-индуцированный окислительный стресс в клетках линии А549. Мед. радиология и радиац. безопасность, 69 (5), 21–27 (2024). doi: 10.33266/1024-6177-2024-69-5-21-27
  40. Tanaka R., Fujita M., Tsuruta R., Fujimoto K., Aki H. S., Kumagai K., Aoki T., Kobayashi A., Izumi T., Kasaoka S., Yuasa M., and Maekawa T. Urinary trypsin inhibitor suppresses excessive generation of superoxide anion radical, systemic inflammation, oxidative stress, and endothelial injury in endotoxemic rats. Inflam. Res., 59 (8), 597–606 (2010). doi: 10.1007/s00011-010-0166-8
  41. Silva M. S., Ribeiro S. F., Taveira G. B., Rodrigues R., Fernandes K. V., Carvalho A. O., Vasconcelos I. M., Mello E. O., and Gomes V. M. Application and bioactive properties of CaTI, a trypsin inhibitor from Capsicum annuum seeds: membrane permeabilization, oxidative stress and intracellular target in phytopathogenic fungi cells. J. Sci. Food Agriculture, 97 (11), 3790–3801 (2017). doi: 10.1002/jsfa.8243
  42. Jia Z., Wang P., Xu Y., Feng G., Wang Q., He X., Song Y., Liu P., and Chen J. Trypsin inhibitor LH011 inhibited DSS-induced mice colitis via alleviating inflammation and oxidative stress. Front. Pharmacol., 13, Art. 986510 (2022). doi: 10.3389/fphar.2022.986510
  43. Nsimba R. Y., Kikuzaki H., and Konishi Y. Ecdysteroids act as inhibitors of calf skin collagenase and oxidative stress. J. Biochem. Mol. Toxicol., 22 (4), 240–250 (2008). doi: 10.1002/jbt.20234
  44. Schock B. C., Sweet D. G., Ennis M., Warner J. A., Young I. S., and Halliday H. L. Oxidative stress and increased type-IV collagenase levels in bronchoalveolar lavage fluid from newborn babies. Pediatric Res., 50 (1), 29– 33 (2001). doi: 10.1203/00006450-200107000-00008

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences