Using the IIIVmrMLM Method to Confirm and Search New Genome-Wide Associations in Chickpea
- Autores: Duk M.A1,2, Kanapin A.A1, Bankin M.P1, Samsonova M.G1
-
Afiliações:
- Peter the Great St.-Petersburg Polytechnic University
- Ioffe Institute
- Edição: Volume 69, Nº 6 (2024)
- Páginas: 1263-1278
- Seção: Complex systems biophysics
- URL: https://ter-arkhiv.ru/0006-3029/article/view/676177
- DOI: https://doi.org/10.31857/S0006302924060126
- EDN: https://elibrary.ru/NKTLLJ
- ID: 676177
Citar
Resumo
Chickpea (Cicer arientinum) is an important crop grown in the Middle East, Central Asia, Turkey, India and southern Russia and used in a wide variety of traditional dishes. The decrease in genetic diversity during domestication, as well as the crop's greater sensitivity to abiotic and biotic stresses, provides the idea of using landraces in breeding programs to improve the crop. The new IIIVmrMLM method for genome-wide association search allowed us to identify new variants in the genetic data of the chickpea collection, which were localized within important genes, and to identify landraces best suited to the climate of the two experimental stations.
Sobre autores
M. Duk
Peter the Great St.-Petersburg Polytechnic University; Ioffe Institute
Email: duk@mail.ioffe.ru
Moscow, Russia
A. Kanapin
Peter the Great St.-Petersburg Polytechnic UniversityMoscow, Russia
M. Bankin
Peter the Great St.-Petersburg Polytechnic UniversityMoscow, Russia
M. Samsonova
Peter the Great St.-Petersburg Polytechnic UniversityMoscow, Russia
Bibliografia
- Redden, R. J. and Berger J. D. History and origin of Chickpea. In Chickpea Breeding & Management. Ed. by S.S. Yadav, R. Redden, W. Chen, and B. Sharma (CABI, Wallingford, UK, 2007), pp. 1-13.
- Varshney R.K., Thudi M., Roorkiwal M., He W., Upadhyaya H. D., Yang W., Bajaj P., Cubry P., Rathore A., Jian J., Doddamani D., Khan A. W., Garg V., Chitikineni A., Xu D., Gaur P. M., Singh N. P., Chaturvedi S. K., Nadigatla G. V. P. R., Krishnamurthy L., Dixit G. P., Fikre A., Kimurto P. K., Sreeman S. M., Bharadwaj C., Tripathi S., Wang J., Lee S. H., Edwards D., Polavarapu K. K. B., Penmetsa R. V., Crossa J., Nguyen H. T., Siddique K. H. M., Colmer T. D., Sutton T., von Wettberg E., Vigouroux Y., Xu X., and Liu X.. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat. Genet., 51, 857-864 (2019). doi: 10.1038/s41588-019-0401-3
- Thudi M., Chitikineni A., Liu X., He W., Roorkiwal M., Yang W., Jian J., Doddamani D., Gaur P. M., Rathore A., Samineni S., Saxena R. K., Xu D., Singh N. P., Chaturvedi S. K., Zhang G., Wang J., Datta S. K., Xu X., and Varshney R. K. Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea (Cicer arietinum L.). Sci. Rep., 6, 38636 (2016). doi: 10.1038/srep38636
- Kumar J. and Abbo S. Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. Adv. Agronomy, 72, 107-138 (2001). doi: 10.1016/S0065-2113(01)72012-3
- Gursky V. V, Kozlov K. N., Nuzhdin S. V, and Samsonova M. G. Dynamical modeling of the core gene network controlling flowering suggests cumulative activation from the FLOWERING LOCUS Tgene homologs in chickpea. Front Genet. 9, 547 (2018). doi: 10.3389/fgene.2018.00547
- Jha Ch. U., Kole Ch. P., and Singh P. N. QTL mapping for heat stress tolerance in chickpea ( Cicer arietinum L.). Legume Res., 44 (4), 382-387 (2019). doi: 10.18805/LR-4121
- Sokolkova A., Bulyntsev S. V, Chang P. L., Carrasquilla-Garcia N., Igolkina A. A., Noujdina N. V., von Wettberg E., Vishnyakova M. A., Cook D. R., Nuzhdin S. V, and Samsonova M. G. Genomic analysis of vavilov’s historic chickpea landraces reveals footprints of environmental and human selection. Int. J. Mol. Sci., 21, 3952 (2020). doi: 10.3390/ijms21113952
- Varshney R. K., Roorkiwal M., Sun Sh., Bajaj P., Chitikineni A., Thudi M., Singh N. P., Du X., Upadhyaya H. D., Khan A. W., Wang Y., Garg V, Fan G., Cowling W. A., Crossa J., Gentzbittel L., Voss-Fels K. P., Valluri V. K., Sinha P., Singh V. K., Ben C., Rathore A., Punna R., Singh M. K., Tar’an B., Bharadwaj Ch., Yasin M., Pithia M. S., Singh S., Soren Kh. R., Kudapa H., Jarquín D., Cubry Ph., Hickey L. T., Dixit G. P., Anne-Thuillet C., Hamwieh A., Kumar Sh., Deokar A. A., Chaturvedi S. K., Francis A., Howard R., Chattopadhyay D., Edwards D., Lyons E., Vigouroux Y., Hayes B. J., von Wettberg E., Datta S. K., Yang H., H. Nguyen T., Wang J., Siddique K. H. M., Mohapatra T., Bennetzen J. L., Xu X., Liu X. A chickpea genetic variation map based on the sequencing of 3,366 genomes, Nature , 599 (7886), 622-627 (2021). doi: 10.1038/s41586-021-04066-1
- Duk M. A., Kanapin A. A., Bankin M. P., Vishnyakova M. A., Bulyntsev S. V, and Samsonova M. G., Genome-wide association analysis in chickpea landraces and cultivars. Biophysics, 68, 952-963 (2023). doi: 10.1134/S0006350923060076
- Zhang Y.-M., Jia Z., and Dunwell J. M. Editorial: The application of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Front. Plant Sci., 10, 100 (2019). doi: 10.3389/fpls.2019.00100
- Zhang Y.-W., Tamba C. L., Wen Y.-J., Li P., Ren W.-L., Ni Y.-L., Gao J., and Zhang Y.-M. mrMLM v4.0.2: An R platform for multi-locus genome-wide association studies. Genom. Proteom. Bioinform., 18, 481-487 (2020). doi: 10.1016/j.gpb.2020.06.006
- Wang J. and Zhang Z. GAPIT Version 3: Boosting power and accuracy for genomic association and prediction. Genom. Proteom. Bioinform., 19 (4), 629-640 (2021). doi: 10.1016/j.gpb.2021.08.005
- Li M., Zhang Y.-W., Xiang Y., Liu M.-H., and Zhang Y.-M. IIIVmrMLM: The R and C++ tools associated with 3VmrMLM, a comprehensive GWAS method for dissecting quantitative traits. Mol. Plant, 15 (8), 12511253 (2022). doi: 10.1016/j.molp.2022.06.002
- Zeng C. J. T., Lee Y.-R. J., and Liu B. The WD40 repeat protein NEDD1 functions in microtubule organization during cell division in Arabidopsis thaliana. Plant Cell, 21 (4), 1129-1140 (2009). doi: 10.1105/tpc.109.065953
- Jakobsson P.-J., Mancini J. A., Riendeau D., and Ford-Hutchinson A. W., Identification and characterization of a novel microsomal enzyme with glutathione-dependent transferase and peroxidase activities. J. Biol. Chem., 272 (36), 22934-22939 (1997). doi: 10.1074/jbc.272.36.22934
- Steinmetz-Spa J., Liu J., Singh R., Ekoff M., Boddul S., Tang X., Bergqvist F., Idborg H., Heitel P., Rönnberg E., Merk D., Wermeling F., Haeggström J. Z., Nilsson G., Steinhilber D., Larsson K., Korotkova M., and Jakobsson P.-J. J. Lipid Res., 63 (12), 100310, (2022). doi: 10.1016/j.jlr.2022.100310
- M. C. Rentel, D. Lecourieux, F. Ouaked, S. L. Usher, L. Petersen, H. Okamoto, H. Knight, S. C. Peck, C. S. Grierson, H. Hirt, and M. R Knight, OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature, 427 (6977), 858-861 (2004). doi: 10.1038/nature02353
- Li X. F., Shen R. J., Liu P. L., Tang Z. C., and He Y. K. Molecular characters and morphological genetics of CAL gene in Chinese cabbage. Cell Res., 10 (1), 29-38 (2000). doi: 10.1038/sj.cr.7290033
- Ogawa E., Yamada Y., Sezaki N., Kosaka S., Kondo H., Kamata N., Abe M., Komeda Y., and Takahashi T. AT-ML1 and PDF2 Play a Redundant and Essential Role in Arabidopsis Embryo Development. Plant Cell Physiol., 56 (6), 1183-1192 (2015). doi: 10.1093/pcp/pcv045
- Rautengarten C., Usadel B., Neumetzler L., Hartmann J., Büssis D., and Altmann Th. A subtilisin-like serine protease essential for mucilage release from Arabidopsis seed coats. Plant J., 54 (3), 466-480 (2008). doi: 10.1111/j.1365-313X.2008.03437.x
- Tian G., Lu Q., Kohalmi S. E., Rothstein S. J., and Cui Y. Evidence that the Arabidopsis Ubiquitin C-terminal Hydrolases 1 and 2 associate with the 26S proteasome and the TREX-2 complex. Plant Signal. Behav., 7 (11), 1415-1419 (2012). doi: 10.4161/psb.21899
- Cockcroft Sh. and Garner K. Function of the phosphatidylinositol transfer protein gene family: is phosphatidylinositol transfer the mechanism of action? Crit. Rev. Biochem. Mol. Biol., 46 (2), 89-117 (2011). doi: 10.3109/10409238.2010.538664
- Kumar R., Raclaru M., Schüßeler T., Gruber J., Sadre R., Lühs W., Zarhloul K. M., Friedt W., Enders D., Frentzen M., and Veier D. Characterisation of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. FEBS Lett., 579, 1357-1364 (2005). doi: 10.1016/j.febslet.2005.01.030
- Bowles D., Lim E.-K., Poppenberger B., and Vaistij F.E. Glycosyltransferases of lipophilic small molecules. Annu. Rev. Plant Biol. 57, 567-597 (2006). doi: 10.1146/annurev.arplant.57.032905.105429
- P. Gao, Z. Xin, and Z.-L. Zheng, The OSU1/QUA2/TSD2-encoded putative methyltransferase is a critical modulator of carbon and nitrogen nutrient balance response in Arabidopsis. PLoS One, 3 (1), e1387 (2008). doi: 10.1371/journal.pone.0001387
- T. Lahari, Lazaro J., and Schroeder D. F. RAD4 and RAD23/HMR Contribute to Arabidopsis UV Tolerance. Genes, 9 (1), 8 (2018). doi: 10.3390/genes9010008
- Okanami M., Meshi T., and Iwabuchi M. Characterization of a DEAD box ATPase/RNA helicase protein of Arabidopsis thaliana. Nucl. Acids Res., 26 (11), 2638-2643 (1998). doi: 10.1093/nar/26.11.2638
- Meinke D. W. Genome-wide identification of EMBRYODEFECTIVE (EMB) genes required for growth and development in Arabidopsis. New Phytol., 226, 306-325 (2020). doi: 10.1111/nph.16071
- Rashotte A. M., Mason M. G., Hutchison C. E., Ferreira F. J., Schaller G. E., and Kieber J. J. A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway Proc. Natl. Acad. Sci. USA, 103 (29), 11081-11085 (2006). doi: 10.1073/pnas.060203810
- Hua D., Wang C., He J., Liao H., Duan Y., Zhu Z., GuoY., Chen Z., and Gong Z. A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell, 24, 2546-2561 (2012). doi: 10.1105/tpc.112.100107
- Zhang Y., Xu Sh., Ding P., Wang D., Cheng Y. T., He J., Gao M., Xu F., Li Y., Zhu Z., Li X., and Zhang Y., Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proc. Natl. Acad. Sci. USA, 107 (42), 18220-18225 (2010). doi: 10.1073/pnas.1005225107
- Chen B., Wang J., G. Zhang, Liu J., Manan S., Hu H., and Zhao J. Two types of soybean diacylglycerol acyltransferases are differentially involved in triacylglycerol biosynthesis and response to environmental stresses and hormones. Sci. Rep., 6, 28541 (2016). doi: 10.1038/srep28541
- Zhu X., Pan T., Zhang X., Fan L., Quintero F. J., Zhao H., Su X., Li X., Villalta I., Mendoza I., Shen J., Jiang L., Pardo J. M., and Qiu Q.-Sh. K+ Efflux Antiporters 4, 5, and 6 Mediate pH and K+ Homeostasis in Endomembrane Compartments. Plant Physiol., 178 (4), 1657-1678 (2018). doi: 10.1104/pp.18.01053
- Li Y., Kabbage M., W. Liu, and Dickman M. B. Aspartyl protease-mediated cleavage of bag6 is necessary for autophagy and fungal resistance in plants. Plant Cell, 28, 233247 (2016). doi: 10.1105/tpc.15.00626
- Tanaka H., Kitakura S., Rakusova H., Uemura T., Feraru M. I., De Rycke R., Robert S., Kakimoto T., and Friml J. Cell polarity and patterning by pin trafficking through early endosomal compartments in Arabidopsis thaliana. PLoS Genetics, 9 (5), e1003540 (2013). doi: 10.1371/journal.pgen.1003540
- https://www.uniprot.org/uniprotkb/Q9SGI7/entry
- Saucet S. B., Ma Y., Sarris P. F., Furzer O. J., Sohn K. H., Jones J. D. Two linked pairs of Arabidopsis TNL resistance genes independently confer recognition of bacterial effector AvrRps4. Nat. Commun., 6, 6338 (2015). doi: 10.1038/ncomms7338, PMID: 25744164.
- Li H. and Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25 (14), 1754-1760 (2009). doi: 10.1093/bioinformatics/btp324
- Tello D., Gonzalez-Garcia L. N., Gomez J., Zuluaga-Monares J. C., Garcia R., Angel R., Mahecha D., Duarte E., Leon M. D. R., Reyes F., Escobar-Velásquez C., Linares-Vásquez M., Cardozo N., and Duitama J. NGSEP 4: Efficient and accurate identification of orthogroups and whole-genome alignment. Mol. Ecol. Resour., 23 (3),712-724 (2023). doi: 10.1111/1755-0998.13737
- Danecek P., Auton A., Abecasis G., Albers C. A., Banks E., DePristo M. A., Handsaker R. E., Lunter G., Marth G. T., Sherry S. T., McVean G., and Durbin R. The variant call format and VCFtools. Bioinformatics, 27 (15), 2156-2158 (2011). doi: 10.1093/bioinformatics/btr330
- Bradbury P. J., Zhang Z., Kroon D. E., Casstevens T. M., Ramdoss Y., and Buckler E. S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23 (19), 2633-2635 (2007). doi: 10.1093/bioinformatics/btm308
- Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M. A., Bender D., Maller J., Sklar P., de Bakker P. I., Daly M. J., and Sham P. C. PLINK: a tool set for wholegenome association and population-based linkage analyses. Am. J. Hum.Genet., 81 (3), 559-575 (2007). doi: 10.1086/519795
Arquivos suplementares
