Mechanisms of Cancer Cell Radioresistance: Modern Trends and Research Prospects
- 作者: Sharapov M.G1, Karmanova E.E1, Gudkov S.V2
-
隶属关系:
- Institute of Cell Biophysics, Russian Academy of Sciences
- Prokhorov General Physics Institute, Russian Academy of Sciences
- 期: 卷 69, 编号 6 (2024)
- 页面: 1235-1262
- 栏目: Cell biophysics
- URL: https://ter-arkhiv.ru/0006-3029/article/view/676156
- DOI: https://doi.org/10.31857/S0006302924060117
- EDN: https://elibrary.ru/NKWBSV
- ID: 676156
如何引用文章
详细
Radiation therapy holds a key position in the arsenal of cancer treatment methods. This non-invasive technique has been actively used for several decades and has demonstrated high effectiveness in combating various types of malignant tumors. Despite significant advancements in ionizing radiation delivery technologies and the introduction of targeted radiosensitizing drugs and immunotherapy, classical radiation therapy faces limitations related to the radioresistance of tumor cells. This resistance is caused by numerous factors, such as genetic mutations, the metabolic characteristics of cancer cells, their ability to repair DNA, the presence of a tumor microenvironment, and many others. Tumor radioresistance reduces the success of treatment, making it necessary to explore new approaches to enhance the effectiveness of radiation therapy. This review discusses the main principles of radiation therapy and the properties of cancer cells that affect their radiosensitivity. It examines both existing methods for overcoming the radioresistance of cancer cells and prospects for further development, which could significantly improve the effectiveness of cancer treatment.
作者简介
M. Sharapov
Institute of Cell Biophysics, Russian Academy of Sciences
Email: sharapov.mg@yandex.ru
Pushchino, Russia
E. Karmanova
Institute of Cell Biophysics, Russian Academy of SciencesPushchino, Russia
S. Gudkov
Prokhorov General Physics Institute, Russian Academy of SciencesMoscow, Russia
参考
- Bray F., Laversanne M., Sung H., Ferlay J., Siegel R. L., Soeijomataram I., and Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 74 (3), 229-263 (2024). doi: 10.3322/caac.21834
- Шахзадова А. О., Старинский В. В. и Лисичникова И. В. Состояние онкологической помощи населению России в 2022 году. Сибирский онкол. журн., 22 (5), 5 (2023). doi: 10.21294/1814-4861 -2023-22-5-5-13
- Papież M. A. and Krzyściak W. Biological therapies in the treatment of cancer —update and new directions. Int. J. Mol. Sci., 22 (21), 11694 (2021). doi: 10.3390/ijms222111694
- Kovalchuk M. V., Deyev S. M., and Sergunova K. A. Targeted nuclear medicine. achievements, challenges and prospects. Nanobiotechnol. Rep., 18 (4), 524-541 (2023). doi: 10.1134/S2635167623700416
- Salem A. Hypoxia-targeted dose painting in radiotherapy. Semin. Radiat. Oncol., 33 (3), 298-306 (2023). doi: 10.1016/j.semradonc.2023.03.009
- Basu R. and Kopchick J. J. GH and IGF1 in cancer therapy resistance. Endocrine-Related Cancer, 30 (9), e220414 (2023). doi: 10.1530/ERC-22-0414
- Ding Y., Ye B., Sun Z., Mao Z. and Wang W. Reactive Oxygen Species-Mediated Pyroptosis with the Help of Nanotechnology: Prospects for Cancer Therapy. Adv. NanoBiomed Res., 3 (1), 2200077 (2023). doi: 10.1002/anbr.202200077
- Guo S., Yao Y., Tang Y., Xin Z., Wu D., Ni C., Huang J., Wei Q. and Zhang T. Radiation-induced tumor immune microenvironments and potential targets for combination therapy. Signal. Transduct. Target. Ther., 8 (1), 205 (2023). doi: 10.1038/s41392-023-01462-z
- Hannon G., Lesch M. L., and Gerber S. A. Harnessing the Immunological Effects of Radiation to Improve Immunotherapies in Cancer. Int. J. Mol. Sci., 24 (8), 7359 (2023). doi: 10.3390/ijms24087359
- Zhao Y., Ji Z., Li J., Zhang S., Wu C., Zhang R., and Guo Z. Growth hormone associated with treatment efficacy of immune checkpoint inhibitors in gastric cancer patients. Front. Oncol., 12, 917313 (2022). doi: 10.3389/fonc.2022.917313
- Twomey J. D. and Zhang B. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J., 23 (2), 39 (2021). doi: 10.1208/s12248-021-00574-0
- Locquet M. A., Brahmi M., Blay J. Y., and DutourA. Radiotherapy in bone sarcoma: the quest for better treatment option. BMC Cancer, 23 (1), 742 (2023). doi: 10.1186/s12885-023-11232-3
- Porrazzo A., Cassandri M., D’Alessandro A., Morciano P., Rota R., Marampon E, and Cenci G. DNA repair in tumor radioresistance: insights from fruit flies genetics. Cell. Oncol., 47 (3), 717-732 (2024). doi: 10.1007/s13402-023-00906-6
- Zhou T., Zhang L. Y., He J. Z., Miao Z. M., Li Y. Y., Zhang Y. M., Liu Z. W., Zhang S. Z., Chen Y., Zhou G. C., and Liu Y. Q. Mechanisms and perspective treatment of radioresistance in non-small cell lung cancer. Front. Immunol., 14, 1133899 (2023). doi: 10.3389/fimmu.2023.1133899
- Hao Y., Jiang H., Thapa P., Ding N., Alshahrani A., Fujii J., Toledano M. B., and Wei Q. Critical role of the sulfiredoxinperoxiredoxin IV axis in urethane-induced non-small cell lung cancer. Antioxidants (Base¡), 12 (2), 367 (2023). doi: 10.3390/antiox12020367
- Fischer J., Eglinton T. W., Frizelle F. A., and Hampton M. B. Peroxiredoxins in colorectal cancer: predictive biomarkers of radiation response and therapeutic targets to increase radiation sensitivity? Antioxidants, 7 (10), 136 (2018). doi: 10.3390/antiox7100136
- Boltman T., Meyer M., and Ekpo O. Diagnostic and therapeutic approaches for glioblastoma and neuroblastoma cancersusingchlorotoxinnanoparticles. Cancers, 15 (13), 3388 (2023). doi: 10.3390/cancers15133388
- Li J., Sun Y., Zhao X., Ma Y., Xie Y., Liu S., Hui B., Shi X., Sun X., and Zhang X. Radiation induces IRAK1 expression to promote radioresistance by suppressing autophagic cell death via decreasing the ubiquitination of PRDX1 in gliomacells. Cell Death Dis., 14 (4), 259 (2023). doi: 10.1038/s41419-023-05732-0
- Arif M., Nawaz A. F., Mueen H., Rashid E, Hemeg H. A., and Rauf A. Nanotechnology-based radiation therapyto cure cancer and the challenges in its clinical applications. Heliyon, 9 (6), e17252 (2023). doi: 10.1016/j.heliyon.2023.e17252
- Becerra V, Ávila M., Jimenez J., Cortes-Sanabria L., Pardo Y., Garin O., Pont A., Alonso J., Cots E, and Ferrer M. Economic evaluation of treatments for patients with localized prostate cancer in Europe: a systematic review. BMC Health Serv. Res., 16, 1-13 (2016). doi: 10.1186/s12913-016-1781-z
- Obrador E., Salvador R., Villaescusa J. I., Soriano J. M., Estrela J. M., and Montoro A. Radioprotectionand radiomitigation: from the bench to clinical practice. Biomedicines , 8 (11), 461 (2020). doi: 10.3390/biomedicines8110461
- Bruskov V. I., Chernikov A. V., Ivanov V. E., Karmanova E. E., and Gudkov S. V. Formation of the reactive species of oxygen, nitrogen, and carbon dioxide in aqueous solutions under physical impacts. Phys. Wave Phenom., 28, 103-106 (2020). doi: 10.3103/S1541308X2002003X
- Nilsson R. and Liu N. A. Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part I: physical, chemical and molecular biology aspects. Radiat. Med. Protect., 1 (3), 140-152 (2020). doi: 10.1016/j.radmp.2020.09.002
- Sriramulu S., Thoidingjam S., Brown S. L., Siddiqui E, Movsas B., and Nyati S. Molecular targets that sensitize cancer to radiation killing: From the bench to the bedside. Biomed. Pharmacother., 158, 114126 (2023). doi: 10.1016/j.biopha.2022.114126
- Gudkov S. V., Guryev E. L., Gapeyev A. B., Sharapov M. G., Bunkin N. E, Shkirin A. V., Zabelina T. S., Glinushkin A. P., Sevost'yanov M. A., Belosludtsev K. N., Chernikov A. V., Bruskov V. I., and Zvyagin A. V. Unmodified hydrated С60 fullerene molecules exhibit antioxidant properties, prevent damage to DNA. and proteins induced by reactive oxygen species and protect mice against injuries caused by radiation-induced oxidative stress. Nanomedicine, 15 (1), 37-46 (2019). doi: 10.1016/j.nano.2018.09.001
- Ahire V, Bidakhvidi N. A., Boterberg T., Chaudhary P., Chevalier E, Daems N., Delbart W., Baatout S., Deroose C. M., Fernandez-Palomo C., Franken N. A. P., Gaipl U. S., Geenen L., Heynickx N., Koniarová I., Selvaraj V. K., Levillain H., Michaelidesová A. J., Montoro A., Oei A. L., Penninckx S., Reindl J., Rödel F., Sminia P., Tabury K., Vermeulen K., Viktorsson K., and Waked A. In Radiobiology Textbook, Ed. by S. Baatout (Springer, Cham, 2023), pp. 311-386. doi: 10.1007/978-3-031-18810-7_6
- Byun H. K., Kim C., and Seong J. Carbon ion radiotherapy in the treatment of hepatocellular carcinoma. Clin. Mol. Hepatol., 29(4), 945 (2023). doi: 10.3350/cmh.2023.0217
- Bradley J. D., Hu C., Komaki R. R, Masters G. A., Blumenschein G. R., Schild S. E., Bogart J. A., Forster K. M., Magliocco A. M., Kavadi V. S., Narayan S., Iyengar P., Robinson C. G., Wynn R. B., Koprowski C. D., Olson M. R., Meng J., Paulus R., Curran W. J. Jr., and Choy H. Long-term results of NRG oncology RTOG 0617: Standard- versus high-dose chemoradiotherapy with or without cetuximab for unresectable stage III non-small-cell lung cancer. J. Clin. Oncol. , 38 (7), 706-714 (2020). doi: 10.1200/JCO.19.01162
- Chan. Wah Hak C. M. L., Rullan A., Patin E. C., Pedersen M., Melcher A. A. AND Harrington K. J. Enhancing anti-tumour innate immunity by targeting the DNA damage response and pattern recognition receptors in combination with radiotherapy. Front. Oncol., 12, 971959 (2022). doi: 10.3389/fonc.2022.971959
- Бычкова Н. М. и Хмелевский Е. В. Современные подходы к лучевой терапии метастатических поражений скелета. Онкология. Ж. им. ПА. Герцена, 8 (4), 295-304 (2019). EDN: XDUALP
- Mirestean C. C., Iancu R. I., and Iancu D. P. T. p53 Modulates radiosensitivity in head and neck cancers — from classic to future horizons. Diagnostics (Basel), 12 (12), 3052 (2022). doi: 10.3390/diagnostics12123052
- Carpov D., Buigä R., and Nagy V. M. DNA. damage response and potential biomarkers of radiosensitivity in head and neck cancers: clinical implications. Rom. J. Morphol. Embryol., 64 (1), 5—13 (2023). doi: 10.47162/RJME.64.1.01
- Slipsager A., Henrichsen S. N., Falkmer U. G., Dybkær K., Belting M., and Poulsen L. 0. Predictive biomarkers in radioresistant rectal cancer: A. systematic review. Crit. Rev. Oncol. Hematol., 186, 103991 (2023). doi: 10.1016/j.critrevonc.2023.103991
- Sato K., Shimokawa T., and Imai T. Difference in acquired radioresistance induction between repeated photon and particle irradiation. Front. Oncol., 9, 1213 (2019). doi: 10.3389/fonc.2019.01213
- Catton C. N. and Shultz D. B. Should we expand the carbon. ion footprint of prostate cancer? Lancet Oncol., 20 (5), 608—609 (2019). doi: 10.1016/S1470-2045(19)30094-4
- Matsumoto Y., Fukumitsu N., Ishikawa H., Nakai K., and Sakurai H. A critical review of radiation therapy: from particle beam therapy (proton, carbon, and BNCT) to beyond. J. Pers. Med., 11 (8), 825 (2021). doi: 10.3390/jpm11080825
- Burko P., D'Amico G., Miltykh I., Scalia F., Conway de Macario E., Macario A. J. L., Giglia G., Cappello F., and Caruso Bavisotto C. Molecular pathways implicated in radioresistance of glioblastoma multiforme: what is the role of extracellular vesicles? Int. J. Mol. Sci., 24 (5), 4883 (2023). doi: 10.3390/ijms24054883
- Koka K., Verma A., Dwarakanath B. S., and Papineni R. V. L. Technological advancements in external beam radiation therapy (EBRT) : An indispensable tool for cancer treatment. Cancer Manag. Res., 14, 1421—1429 (2022). doi: 10.2147/CMAR.S351744
- Wang S., Tang W., Luo H., Jin F., and Wang Y. The role of image-guided radiotherapy in prostate cancer: A systematic review and meta-analysis. Clin. Translat. Radiat. Oncol. , 38, 81—89 (2023). doi: 10.1016/j.ctro.2022.11.001
- Xu S., Frakulli R., and Lin Y. Comparison of the Effectiveness of Radiotherapy with 3D-CRT, IMRT, VMAT and PT for Newly Diagnosed Glioblastoma: A Bayesian Network Meta-Analysis. Cancers (Basel), 15 (23), 5698 (2023). doi: 10.3390/cancers15235698
- Ebadi N., Li R., Das A., Roy A., Nikos P., and Najafirad P. CBCT-guided adaptive radiotherapy using self-supervised sequential domain adaptation with uncertainty estimation. Med. Image Analysis, 86,102800 (2023). doi: 10.1016/j.media.2023.102800
- Bilski M., Konat-Bąska K., Zerella M. A., Corradini S., Hetnał M., Leonardi M. C., Gruba M., Grzywacz A., Hatala P., Jereczek-Fossa B. A., Fijuth J., and Kuncman Ł. Advances in breast cancer treatment: a systematic review of preoperative stereotactic body radiotherapy (SBRT) forbreast cancer. Radiat. Oncol., 19 (1), 103 (2024). doi: 10.1186/s13014-024-02497-4
- Ryu S., Deshmukh S., Timmerman R. D., Movsas B., Gerszten P., Yin F. F., Dicker A., Abraham C. D., Zhong J., Shiao S. L., Tuli R., Desai A., Mell L. K., Iyengar P., Hitchcock Y. J., Allen A. M., Burton S., Brown D., Sharp H. J., Dunlap N. E., Siddiqui M. S., Chen T. H., Pugh S. L., and Kachnic L. A. Stereotactic Radiosurgery vs Conventional Radiotherapyfor Localized Vertebral Metastases of the Spine: Phase 3 Results of NRG Oncology/RTOG 0631 Randomized Clinical Trial. JAMA Oncol., 9 (6), 800—807 (2023). doi: 10.1001/jamaoncol.2023.0356
- Schiefer H., Heinze S., and Glatzer M. Aprecise and simple isodose-volume-based verification method for HDR and LDR. brachytherapy plans. Brachytherapy, 22 (3), 400—406 (2023). doi: 10.1016/j.brachy.2022.12.007
- Sminia P., Guipaud O., Viktorsson K., Ahire V, Baatout S., Boterberg T., Cizkova J., Dostál M., Fernandez-Palomo C., Filipova A., François A., Geiger M., Hunter A., Jassim H., Edin N. F. J., Jordan K., KoniarováI., Selvaraj V. K., Meade A. D., Milliat F., Montoro A., Politis C., Savu D., Sémont A., Tichy A., Válek V., and Vogin G. Clinical Radiobiology for Radiation Oncology. In Radiobiology Textbook, Ed. by S. Baatout (Springer, Cham, 2023), pp. 237—309. doi: 10.1007/978-3-031-18810-7_5
- Turco F., Di Prima L., Pisano C., Poletto S., De Filippis M., Crespi V., Farinea G., Cani M., Calabrese M., Saporita I., Di Stefano R. F., Tucci M., and Buttigliero C. How to Improve the Quality of Life of Patients with Prostate Cancer Treated with Hormone Therapy? Res. Rep. Urol., 15 (9), 9—26 (2023). doi: 10.2147/RRU.S350793
- Peng W. X., Koirala P., Zhou H., Jiang J., Zhang Z., Yang L., and Mo Y. Y. Lnc-DC promotes estrogen independent growth and tamoxifen resistance in breast cancer. Cell Death Dis., 12 (11), 1000 (2021). doi: 10.1038/s41419-021-04288-1
- Kirtishanti A., Siswodihardjo S., Sudiana I. K., Suprabawati D. G. A., and Dinaryanti A. Inhibition of Ras and STAT3 activity of 4-(tert-butyl)-N-carbamoylbenzamide as antiproliferative agent in HER2-expressing breast cancer cells. J. Basic. Clin. Physiol. Pharmacol., 32 (4), 363— 371 (2021). doi: 10.1515/jbcpp-2020-0508
- Javaid N. and Choi S. Toll-like receptors from the perspective of cancer treatment. Cancers (Basel), 12 (2), 297 (2020). doi: 10.3390/cancers12020297
- Mohamed Y. I., Duda D. G., Awiwi M. O., Lee S. S., Altameemi L., Xiao L., Morris J. S., Wolff R. A., Elsayes K. M., Hatia R. I., Qayyum A., Chamseddine S. M., Rashid A., Yao J. C., Mahvash A., Hassan. M. M., Amin H. M., and Kaseb A. O. Plasma growth hormone is a potential biomarker of response to atezolizumab and bevacizumab in advanced hepatocellular carcinomapatients. Oncotarget, 13, 1314—1321 (2022). doi: 10.18632/oncotarget.28322
- Harari A., Graciotti M., Bassani-Sternberg M. and Kandalaft L. E. Antitumour dendritic cell vaccination in a primingandboostingapproach. Nat. Rev. Drug Discov., 19 (9), 635-652 (2020). doi: 10.1038/s41573-020-0074-8
- Vedunova M., Turubanova V, Vershinina O., Savyuk M., Efimova I., Mishchenko T., Raedt R., Vral A., Vanhove C., Korsakova D., Bachert C., Coppieters E, Agostinis P., Garg A. D., Ivanchenko M., Krysko O. and Krysko D.V DC vaccines loaded with glioma cells killed by photodynamic therapy induce Th17 anti-tumor immunity and provide a four-gene signature for glioma prognosis. Cell Death Dis., 13 (12), 1062 (2022). doi: 10.1038/s41419-022-05514-0
- Sharma P., Hu-Lieskovan S., Wargo J. A., and Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 168 (4), 707-723 (2017). doi: 10.1016/j.cell.2017.01.017
- Herrera F .G., Ronet C., Ochoa de Olza M., Barras D., Crespo I., Andreatta M., Corria-Osorio J., Spill A., Benedetti F., Genolet R., Orcurto A., Imbimbo M., Ghisoni E., Navarro Rodrigo B., Berthold D. R., Sarivalasis A., Zaman K., Duran R., Dromain C., Prior J., Schaefer N., Bourhis J., Dimopoulou G., Tsourti Z., Messemaker M., Smith T., Warren S. E., Foukas P., Rusakiewicz S., Pittet M. J., Zimmermann S., Sempoux C., Dafni U., Harari A., Kandalaft L. E., Carmona S. J., Dangaj Laniti D., Irving M., and Coukos G. Low-Dose Radiotherapy Reverses Tumor Immune Desertification and Resistance to Immunotherapy. CancerDiscov., 12 (1), 108-133 (2022). doi: 10.1158/2159-8290.CD-21-0003
- Chen X., Li J., Kang R., Klionsky D. J., and Tang D. Ferroptosis: machinery and regulation. Autophagy, 17(9), 2054-2081 (2021). doi: 10.1080/15548627.2020.1810918
- An L., Li M. and Jia Q. Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma. Mol. Cancer, 22(1), 140 (2023). doi: 10.1186/s12943-023-01839-2
- Lai J. Z., Zhu Y. Y., Liu Y., Zhou L. L., Hu L., Chen L., and Zhang Q. Y. Abscopal effects of local radiotherapy are dependent on tumor immunogenicity. Front. Oncol., 11, 690188 (2021). doi: 10.3389/fonc.2021.690188
- Patel R. R., Verma V., Barsoumian H. B., Ning M. S., Chun S. G., Tang C., Chang J. Y., Lee P. P., Gandhi S., Balter P., Dunn J. D., Chen D., Puebla-Osorio N., Cortez M. A. and Welsh J. W. Use of multi-site radiation therapy for systemic disease control. Int. J. Radiat. Oncol. Biol. Phys., 109 (2), 352-364 (2021). doi: 10.1016/j.ijrobp.2020.08.025
- Russo M., Moccia S., Luongo D. and Russo G. L. Senolytic flavonoids enhance type-i and type-II cell death in human radioresistant colon cancer cells through AMPK/MAPK pathway. Cancers (Basel), 15 (9), 2660 (2023). doi: 10.3390/cancers15092660
- Gil Marques F., Poli E., Malaquias J., Carvalho T., Portê-lo A., Ramires A., Aldeia F., Ribeiro R. M., Vitorino E., Diegues I., Costa L., Coutinho J., Pina F., Mareel M. and Constantino Rosa Santos S. Low doses of ionizing radiation activate endothelial cells and induce angiogenesis in pertumoral tissues. Radiother. Oncol., 151, 322-327 (2020). doi: 10.1016/j.radonc.2020.06.038
- Cao X., Yan Z., Chen Z., Ge Y., Hu X., Peng E, Huang W., Zhang P., Sun R., Chen J., Ding M., He X., Zong D. and He X. The emerging role of deubiquitinases in radiosensitivity. Int. J. Radiat. Oncol. Biol. Phys., 118 (5), 1347-1370 (2024). doi: 10.1016/j.ijrobp.2023.12.003
- Mehmandar-Oskuie A., Jahankhani K., Rostamlou A., Arabi S., Sadat Razavi Z. and Mardi A. Molecular landscape of LncRNAs in bladder cancer: From drug resistance to novel LncRNA-based therapeutic strategies. Biomed. Pharmacother., 165, 115242 (2023). doi: 10.1016/j.biopha.2023.115242
- Cunha A., Silva P. M. A., Sarmento B. and Queirós O. Targeting glucose metabolism in cancer cells as an approach to overcoming drug resistance. Pharmaceutics, 15, 2610 (2023). doi: 10.3390/pharmaceutics15112610
- Olivares-Urbano M. A., Griñán-Lisón C., Marchal J. A., and Núñez M. I. CSC radioresistance: Atherapeutic challenge to improve radiotherapy effectiveness in cancer. Cells, 9 (7), 1651 (2020). doi: 10.3390/cells9071651
- Jansen J., Vieten P., Pagliari F., Hanley R., Marafioti M. G., Tirinato L., and Seco J. A novel analysis method for evaluating the interplay of oxygen and ionizing radiation at the gene level. Front. Genet., 12, 597635 (2021). doi: 10.3389/fgene.2021.597635
- Schnöller L. E., Piehlmaier D., Weber P., Brix N., Fleischmann D. E, Nieto A. E., Selmansberger M., Heider T., Hess J., Niyazi M., Belka C., Lauber K., Unger K., and Orth M. Systematic in vitro analysis of therapy resistance in glioblastoma cell lines by integration of clonogenic survival data with multi-level molecular data. Radiat. Oncol., 18 (1), 51 (2023). doi: 10.1186/s13014-023-02241-4
- Hanahan D. Hallmarks of cancer: New dimensions. Cancer Dis., 12 (1), 31-46 (2022). doi: 10.1158/2159-8290.CD-21-1059
- Gao F., Yu B., Rao B., Sun Y., Yu J., Wang D., Cui G., and Ren Z. The effect of the intratumoral microbiome on tumor occurrence, progression, prognosis and treatment. Front Immunol., 13, 1051987 (2022). doi: 10.3389/fimmu.2022.1051987
- Forshaw T. E., Holmila R., Nelson K. J., Lewis J. E., Kemp M. L., Tsang A. W., Poole L. B., Lowther W. T., and Furdui C. M. Peroxiredoxins in Cancer and Response to Radiation Therapies. Antioxidants (Base¡), 8 (1), 11 (2019). doi: 10.3390/antiox8010011
- Yang Q., Guo N., Zhou Y., Chen J., Wei Q., and Han M. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharm. Sin. B, 10 (11), 2156-2170 (2020). doi: 10.1016/j.apsb.2020.04.004
- Vasan N., Baselga J. and Hyman D. M. A view on drug resistance in cancer. Nature, 575, 299—309 (2019). doi: 10.1038/s41586-019-1730-1
- Robey R. W., Pluchino K. M., Hall M. D., Fojo A. T., Bates S. E., and Gottesman M. M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer, 18, 452-464 (2018). doi: 10.1038/s41568-018-0005-8
- Gillespie M. S., Ward C. M., and Davies C. C. DNA Repair and Therapeutic Strategies in Cancer Stem Cells. Cancers (Basel), 15 (6), 1897 (2023). doi: 10.3390/cancers15061897
- Wang N., Yang Y., Jin D., Zhang Z., Shen K., Yang J., Chen H., Zhao X., Yang L., and Lu H. PARP inhibitor resistance in breast and gynecological cancer: Resistance mechanisms and combination therapy strategies. Front. Pharmacol., 13, 967633 (2022). doi: 10.3389/fphar.2022.967633
- Liu R., Chen Y., Liu G., Li C., Song Y., Cao Z., Li W., Hu J., Lu C., and Liu Y. (2020) PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis., 11, 797 (2020). doi: 10.1038/s41419-020-02998-6
- Averill-Bates D. Reactive oxygen species and cell signaling. Review. Biochim. Biophys. Acta Mol. Cell. Res., 1871 (2), 119573 (2023). doi: 10.1016/j.bbamcr.2023.119573
- Gorecki L., Andrs M. and Korabecny J. Clinical candidates targeting the ATR-CHK1-WEE1 axis in cancer. https://doi.org/Cancers (Basel), 13 (4), 795 (2023). doi: 10.3390/cancers13040795
- Xu L., Cao Y., Xu Y., Li R., and Xu X. Redox-responsive polymeric nanoparticle for nucleic acid delivery and cancer therapy: progress, opportunities, and challenges. Macromol. Biosci., 24 (3), e2300238 (2024). doi: 10.1002/mabi.202300238
- Nowak P., Bil-Lula I., and Śliwińska-Mossoń M. A Cross-talk about radioresistance in lung cancer—how to improve radiosensitivity according to chinese medicine and medicaments that commonly occur in pharmacies. Int. J. Mol. Sci., 24 (13), 11206 (2023). doi: 10.3390/ijms241311206
- Kumagai S., Togashi Y., Sakai C., Kawazoe A., Kawazu M., Ueno T., Sato E., Kuwata T., Kinoshita T., Yamamoto M., Nomura S., Tsukamoto T., Mano H., Shitara K., and Nishikawa H. An oncogenic alteration creates a microenvironment that promotes tumor progression by conferring a metabolic advantage to regulatory T cells. Immunity, 53 (1), 187-203 (2020). doi: 10.1016/j.immuni.2020.06.016
- Ding N., Jiang H., Thapa P., Hao Y., Alshahrani A., Allison D., Izumi T., Rangnekar V. M., Liu X., and Wei Q. Peroxiredoxin IV plays a critical role in cancer cell growth and radioresistance through the activation of the Akt/GSK3 signaling pathways. J. Biol. Chem., 298 (7), 102123 (2022). doi: 10.1016/j.jbc.2022.102123
- Suzuki T., Takahashi J., and Yamamoto M. Molecular basis of the KEAP1-NRF2 signaling pathway. Mol. Cells, 46 (3), 133-141 (2023). doi: 10.14348/molcells.2023.0028
- Aramouni K., Assaf R., Shaito A., Fardoun M., Al-Asmakh M., Sahebkar A. and Eid A. H. Biochemical and cellular basis of oxidative stress: implications for disease onset. J. Cell. Physiol., 238 (9), 1951-1963 (2023). doi: 10.1002/jcp.31071
- Yaromina A., Koi L., Schuitmaker L., Dubois L. J., Krause M., and Lambin P. Overcoming radioresistance with the hypoxia-activated prodrug CP-506: A pre-clinical study of local tumour control probability. Radiother. Oncol., 186, 109738 (2023). doi: 10.1016/j.radonc.2023.109738
- Moretton A., Kourtis S., Ganez Zapater A., Calabro C., Espinar Calvo M. L., Fontaine F., Darai E., Abad CortelE., Block S., Pascual-Reguant L., Pardo-Lorente N., Ghose R., Vander Heiden M. G., Janic A., Muller A. C., Loizou J. I., and Sdelci S. A metabolic map of the DNA damage response identifies PRDX1 in the control of nuclear ROS scavenging and aspartate availability. Mol. Syst. Biol., 19 (7), e11267 (2023). doi: 10.15252/msb.202211267
- Imamura J., Ganguly S., Muskara A., Liao R. S., Nguyen J. K., Weight C., Wee C. E., Gupta S., and Mian O. Y. Lineage plasticity and treatment resistance in prostate cancer: the intersection of genetics, epigenetics, and evolution. Front. Endocrinol. (Lausanne), 14, 1191311 (2023). doi: 10.3389/fendo.2023.1191311
- Barciszewska A. M., Giel-Pietraszuk M., Perrigue P. M., and Naskręt-Barciszewska M. Total DNA methylation changes reflect random oxidative dna damage in gliomas. Cells, 8, 1-14 (2019). doi: 10.3390/cells8091065
- Gào X., Zhang Y., Burwinkel B., Xuan Y., Holleczek B., Brenner H., and Schöttker B. The associations of DNA methylation alterations in oxidative stress-related genes with cancer incidence and mortality outcomes: a population-based cohort study. Clin. Epigenetics, 11 (1), 14 (2019). doi: 10.1186/s13148-018-0604-y
- Wu M., Deng C., Lo T. H., Chan K. Y., Li X., and Wong C. M. Peroxiredoxin, senescence, and cancer. Cells, 11 (11), 1772 (2022). doi: 10.3390/cells11111772
- Abad E., Graifer D., and Lyakhovich A. DNA damage response and resistance of cancer stem cells. Cancer Lett., 474, 106 (2020). doi: 10.1016/j.canlet.2020.01.008
- Paul R., Dorsey J. E, and Fan Y. Cell plasticity, senescence, and quiescence in cancer stem cells: Biological and therapeutic implications. Pharmacol. Ther., 231, 107985 (2022). doi: 10.1016/j.pharmthera.2021.107985
- Cotino-Nájera S., Herrera L. A., Domínguez-Gómez G., and Díaz-Chávez J. Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer. Front. Pharmacol., 14, 1287505 (2023). doi: 10.3389/fphar.2023.1287505
- Liu J., Erenpreisa J., and Sikora E. Polyploid giant cancer cells: an emerging new field of cancer biology. Seminars Cancer Biol., 81, 1-4 (2022). doi: 10.1016/j.semcancer.2021.10.006
- Kang H., Kim B., Park J., Youn H., and Youn B. The Warburg effect on radioresistance: Survival beyond growth. Biochim. Biophys. Acta Rev. Cancer, 1878 (6), 188988 (2023). doi: 10.1016/j.bbcan.2023.188988
- Lendeckel U. and Wolke C. Redox-regulation in cancer stem cells. Biomed., 10 (10), 2413 (2022). doi: 10.3390/biomedicines10102413
- Wei B., Cao J., Tian J. H., Yu C. Y, Huang Q., Yu J. J., Ma R., Wang J., Xu F., and Wang L. B. Mortalin maintains breast cancer stem cells stemness via activation of Wnt/GSK3ß/ß-catenin signaling pathway. Am. J. Cancer Res., 11 (6), 2696-2716 (2021). DOI:
- Son Y. W., Cheon M. G., Kim Y., and Jang H. H. Prx2 links ROS homeostasis to stemness of cancer stem cells. Free Radic. Biol. Med., 134, 260-267 (2019). doi: 10.1016/j.freeradbiomed.2019.01.001
- Burkhardt D. B., San Juan B. P., Lock J. G., Krishnaswamy S., and Chaffer C. L. Mapping Phenotypic Plasticity upon the Cancer Cell State Landscape Using Manifold Learning. Cancer Discov., 12 (8), 1847-1859 (2022). doi: 10.1158/2159-8290.CD-21-0282
- Qin S., Jiang J., Lu Y., Nice E. C., Huang C., Zhang J., and He W. Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduct. Target. Ther., 5 (1), 228 (2020). doi: 10.1038/s41392-020-00313-5
- Yuan S., Norgard R. J., and Stanger B. Z. Cellular plasticity in cancer. Cancer Discov., 9 (7), 837-851 (2019). doi: 10.1158/2159-8290
- Brown M. S., Abdollahi B., Wilkins O. M., Lu H., Chakraborty P., Ognjenovic N. B., Muller K. E., Jolly M. K., Christensen B. C., Hassanpour S., and Pattabiraman D. R. Phenotypic heterogeneity driven by plasticity of the intermediate EMT state governs disease progression and metastasis in breast cancer. Sci. Adv., 8 (31), eabj8002 (2022). DOI: https://doi.org/10.1126/sciadv.abj8002
- Qiao L., Chen Y., Liang N., Xie J., Deng G., Chen F., Wang X., Liu F., Li Y., and Zhang J. Targeting epithelial-to-mesenchymal transition in radioresistance: crosslinked mechanisms and strategies. Front. Oncol., 12, 775238 (2022). doi: 10.3389/fonc.2022.775238
- Marine J. C., Dawson S. J., and Dawson M. A. Non-genetic mechanisms of therapeutic resistance in cancer. Nat. Rev. Cancer., 20 (12), 743-756 (2020). doi: 10.1038/s41568-020-00302-4:
- Lai X., Li Q., Wu F., Lin J., Chen J., Zheng H., and Guo L. Epithelial-mesenchymal transition and metabolic switching in cancer: lessons from somatic cell reprogramming. Front. Cell Dev. Biol., 8, 760 (2020). doi: 10.3389/fcell.2020.00760
- Xue W., Yang L., Chen C., Ashrafizadeh M., Tian Y., and Sun R. Wnt/ß-catenin-driven EMT regulation in human cancers. Cell. Mol. Life Sci., 81 (1), 79 (2024). doi: 10.1007/s00018-023-05099-7
- Tahtamouni L., Ahram M., Koblinski J., and Rolfo C. Molecular regulation of cancer cell migration, invasion, and metastasis. Anal. Cell Pathol. (Amst.), 2019, 1356508 (2019). doi: 10.1155/2019/1356508
- Lee J. and Roh J. L. Epithelial-mesenchymal plasticity: Implications for ferroptosis vulnerability and cancer therapy. Crit. Rev. Oncol. Hematol., 185, 103964 (2023). doi: 10.1016/j.crtrevonc.2023.103964
- Checker R., Bhilwade H. N., Nandha S. R., Patwardhan R. S., Sharma D., and Sandur S. K. Withaferin A, a steroidal lactone, selectively protects normal lymphocytes against ionizing radiation induced apoptosis and genotoxicity via activation of ERK/Nrf-2/HO-1 axis. Toxicol. Appl. Pharmacol., 461, 116389 (2023). doi: 10.1016/j.taap.2023.116389
- Sies H. and Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell. Biol., 21, 363-383 (2020). doi: 10.1038/s41580-020-0230-3
- Sies H., Belousov V. V, Chandel N. S., Davies M. J., Jones D.P., Mann G. E., Murphy M. P., Yamamoto M., and Winterbourn C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell. Biol., 23, 499-515 (2022).
- Jomo va K., Rapto va R., Alomar S. Y., Alwasel S. H., Nepovimova E., Kuca K., and Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol., 97 (10), 2499-2574 (2023). doi: 10.1007/s00204-023-03562-9
- Zhang H., Mao Z., Kang Y., Zhang W., Mei L., and Ji X. Redox regulation and its emerging roles in cancer treatment. Coordinat Chem. Rev., 475, 214897 (2023). doi: 10.1016/j.ccr.2022.214897
- Richardson R. B. and Mailloux. R. J. Mitochondria need their sleep: redox, bioenergetics, and temperature regulation of circadian rhythms and the role of cysteine-mediat-ed redox signaling, uncoupling proteins, and substrate cycles. Antioxidants (Basel), 12 (3), 674 (2023). doi: 10.3390/antiox12030674
- Peng L., Xiong Y., Wang R., Xiang L., Zhou H., and Fu Z. The critical role of peroxiredoxin-2 in colon cancer stem cells. Aging (Albany NY), 13 (8), 11170 11187 (2021). doi: 10.18632/aging.202784
- Hayes J. D., Dinkova-Kostova A. T. and Tew K. D. Oxidative stress in cancer. Cancer Cell, 38, 167-197 (2020). doi: 10.1016/j.ccell.2020.06.001
- Jin P., Li L., Nice E. C., and Huang C. (2023) Nanomedicine-based modulation of redox status for cancer therapy. Australian J. Chem., 76 (6-8), 337-350 (2023). doi: 10.1071/CH22246
- Guan X., Ruan Y., Che X., and Feng W. Dual role of PRDX1 in redox-regulation and tumorigenesis: Past and future. Free Rad. Biol. Med., 210, 120-129 (2024). doi: 10.1016/j.freeradbiomed.2023.11.009
- Jiang J., Peng L., Wang K., and Huang C. Moonlighting metabolic enzymes in cancer: new perspectives on the redox code. Antioxid. Redox Signal., 34, 979-1003 (2021). doi: 10.1089/ars.2020.8123
- Balasubramanian P., Vijayarangam V, Deviparasakthi M. K. G., Palaniyandi T., Ravi M., Natarajan S., Viswanathan S., Baskar G., Wahab M. R. A., and Surendran H. Implications and progression of peroxiredoxin 2 (PRDX2) in various human diseases. Pathol. Res. Pract., 254, 155080 (2024). doi: 10.1016/j.prp.2023.155080
- Liu W., Su J., Shi Q., Wang J., Chen X., Zhang S., Li M., Cui J., Fan C., Sun B., and Wang G. Peptide-conjugated selenium nanocomposite inhibits human glioma growth by triggering mitochondrial dysfunction and ROS-dependent MAPKs activation. Front. Bioeng. Biotechnol., 9, 781608 (2021). doi: 10.3389/fbioe.2021.781608
- Wang L. Y., Liu X. J., Li Q. Q., Zhu Y, Ren H. L., Song J. N., Zeng J., Mei J., Tian H. X., Rong D. C., and Zhang S. H. The romantic history of signaling pathway discovery in cell death: an updated review. Mol. Cell. Biochem., 2023, 1-18 (2023). doi: 10.1007/s11010-023-04873-2
- Azmanova M. and Pitto-Barry A. Oxidative stress in cancer therapy: Friend or enemy? Chembiochem., 23, e202100641 (2022). doi: 10.1002/cbic.202100641
- Mirzaei S., Ranjbar B., Tackallou S. H., and Aref A. R. Hypoxia inducible factor-1a (HIF-1a) in breast cancer: The crosstalk with oncogenic and onco-suppressor factors in regulation of cancer hallmarks. Pathol. Res. Pract., 248, 154676 (2023). doi: 10.1016/j.prp.2023.154676
- Ali R., Alhaj Sulaiman A., Memon B., Pradhan S., Algethami M., Aouida M., McKay G., Madhusudan S., Abdelalim E. M., and Ramotar D. Altered Regulation of the glucose transporter GLUT3 in PRDX1 null cells caused hypersensitivity to arsenite. Cells, 12 (23), 2682 (2023). doi: 10.3390/cells12232682
- Yang C., Xu W., Gong J., Chai F., Cui D., and Liu Z. Six1 Overexpression promotes glucose metabolism and invasion through regulation of GLUT3, MMP2 and snail in thyroid cancer cells. Onco Targets Ther., 13, 4855-4863 (2020). doi: 10.2147/OTT.S227291
- Houshyari M. A critical review on exploring tumor microenvironment's impacts on radioresistance. J. Rad. Res. App. Sci., 17 (2), 100937 (2024). doi: 10.1016/j.jrras.2024.100937
- An D., Zhai D., Wan C., and Yang K. The role of lipid metabolism in cancer radioresistance. Clin. Transl. Oncol., 25 (8), 2332-2349 (2023). doi: 10.1007/s12094-023-03134-4
- Eltayeb K., La Monica S., Tiseo M., Alfieri R., and Fumarola C. Reprogramming of lipid metabolism in lung cancer: An overview with focus on EGFR-mutated nonsmall cell lung cancer. Cells, 11 (3), 413 (2022). doi: 10.3390/cells11030413
- Marino N., German R., Rao X., Simpson E., Liu S., Wan J., Liu Y., Sandusky G., Jacobsen M., Stoval M., Cao S., and Storniolo A. M. V Upregulation of lipid metabolism genes in the breast prior to cancer diagnosis. NPJ Breast Cancer, 6 (1), 50 (2020). doi: 10.1038/s41523-020-00191-8
- Pham D. V. and Park P. H. Adiponectin triggers breast cancer cell death via fatty acid metabolic reprogramming. J. Exp. Clin. Cancer Res., 41 (1), 9 (2020). doi: 10.1186/s13046-021-02223-y
- Cheng X., Geng F., Pan M., Wu X., Zhong Y., Wang C., Tian Z., Cheng C., Zhang R., Puduvalli V, Horbinski C., Mo X., Han X., Chakravarti A., and Guo D. Targeting DGAT1 ameliorates glioblastoma by increasing fat catabolism and oxidative stress. Cell. Metab., 32 (2), 229-242 (2020). doi: 10.1016/j.cmet.2020.06.002
- Koundouros N. and Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer, 122 (1), 422 (2020). doi: 10.1038/s41416-019-0650-z
- Li Y. J., Fahrmann J. F., Aftabizadeh M., Zhao Q., Tripathi S. C., Zhang C., Yuan Y., Ann D., Hanash S., and Yu H. Fatty acid oxidation protects cancer cells from apoptosis by increasing mitochondrial membrane lipids. Cell Rep., 39 (13), 111044 (2022). doi: 10.1016/j.celrep.2022.111044
- De Martino M., Daviaud C., Minns H. E., Lazarían A., Wacker A., Costa A. P., Attarwala N., Chen Q., Choi S. W., Rabadán R., McIntire L. B. J., Gartrell R. D., Kelly J. M., Laiakis E. C., and Vanpouille-Box C. Radiation therapy promotes unsaturated fatty acids to maintain survival of glioblastoma. Cancer Lett., 570, 216329 (2023). doi: 10.1016/j.canlet.2023.216329
- Jin Y., Tan Y., Wu J., and Ren Z. Lipid droplets: a cellular organelle vital in cancer cells. Cell Death Discov., 9 (1), 254 (2023). doi: 10.1038/s41420-023-01493-z
- Wang D., Ye Q., Gu H., and Chen Z. The role of lipid metabolism in tumor immune microenvironment and potential therapeutic strategies. Front. Oncol., 12, 984560 (2022). doi: 10.3389/fonc.2022.984560
- DePeaux K. and Delgoffe G. M. Metabolic barriers to cancer immunotherapy. Nat. Rev. Immunol., 21 (12), 785-797 (2021). doi: 10.1038/s41577-021-00541-y
- Zhao L., Liu Y., Zhang S., Wei L., Cheng H., Wang J., and Wang J. Impacts and mechanisms ofmetabolic reprogramming of tumor microenvironment for immunotherapy in gastric cancer. Cell Death Dis., 13 (4), 378 (2022). doi: 10.1038/s41419-022-04821-w
- Wang K., Michelakos T., Wang B., Shang Z., DeLeo A. B., Duan Z., Hornicek F. J., Schwab J. H., and Wang X. Targeting cancer stem cells by disulfiram and copper sensitizes radioresistant chondrosarcoma to radiation. Cancer Lett., 505, 37-48 (2021). doi: 10.1016/j.canlet.2021.02.002
- Su X., Xu Y., Fox G. C., Xiang J., Kwakwa K. A., Davis J. L., Belle J. I., Lee W. C., Wong W. H., Fontana F., Hernandez-Aya L. F., Kobayashi T., Tomasson H. M., Su J., Bakewell S. J., Stewart S. A., Egbulefu C., Karmakar P., Meyer M. A., Veis D. J., DeNardo D. G., Lanza G. M., Achilefu S., and Weilbaecher K. N. Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment. J. Clin. Invest., 131 (20), e145296 (2021). doi: 10.1172/JCI145296
- Xiang L. and Meng X. Emerging cellular and molecular interactions between the lung microbiota and lung diseases. Crit. Rev. Microbiol., 48 (5), 577-610 (2022). doi: 10.1080/1040841X.2021.1992345
- Lee Y. H., Tai D., Yip C., Choo S. P. and Chew V. Combinational Immunotherapy for Hepatocellular Carcinoma: Radiotherapy, Immune Checkpoint Blockade and Beyond. Front. Immunol., 11, 568759 (2020). doi: 10.3389/fimmu.2020.568759
- He K., Barsoumian H. B., Puebla-Osorio N., Hu Y., Sezen D., Wasley M. D., Bertolet G., Zhang J., Leuschner C., Yang L., Kettlun Leyton C. S., Fowlkes N. W., Green M. M., Hettrick L., Chen D., Masrorpour F., Gu M., Maazi H., Revenko AS., Cortez M. A., and Welsh J. W. Inhibition of STAT6 with Antisense Oligonucleotides Enhances the Systemic Antitumor Effects of Radiotherapy and Anti-PD-1 in Metastatic Non-Small Cell Lung Cancer. Cancer Immunol. Res., 11 (4), 486-500 (2023). doi: 10.1158/2326-6066.CIR-22-0547
- Zhang F., Sang Y., Chen D., Wu X., Wang X., Yang W., and Chen Y. M2 macrophage-derived exosomal long non-coding RNA AGAP2-AS1 enhances radiotherapy immunity in lung cancer by reducing microRNA-296 and elevating NOTCH2. Cell Death Dis., 12 (5), 467 (2021). doi: 10.1038/s41419-021-03700-0
- Korbecki J., Bosiacki M., Barczak K., Łagocka R., Brodowska A., Chlubek D., and Baranowska-Bosiacka I. Involvement in Tumorigenesis and Clinical Significance of CXCL1 in Reproductive Cancers: Breast Cancer, Cervical Cancer, Endometrial Cancer, Ovarian Cancer and Prostate Cancer. Int. J. Mol. Sci., 24 (8), 7262 (2023). doi: 10.3390/ijms24087262
- Tsolou A., Lamprou I., Fortosi A. O., Liousia M., Giatromanolaki A., and Koukourakis M. I. 'Stemness' and 'senescence' related escape pathways are dose dependent in lung cancer cells surviving post irradiation. Lfe Sci., 232, 116562 (2019). doi: 10.1016/j.lfs.2019.116562
- Nie Y., Yang D., and Oppenheim J. J. Alarmins and antitumor immunity. Clin. Ther., 38 (5), 1042-1053 (2016). doi: 10.1016/j.clinthera.2016.03.021
- Land W. G., Agostinis P., Gasser S., Garg A. D., and Linkermann A. DAMP-induced allograft and tumor rejection: The circle is closing. Am. J. Transplant., 16 (12), 3322-3337 (2016). doi: 10.1111/ajt.14012
- Hernandez C., Huebener P. and Schwabe R. F. Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene, 35 (46), 5931-5941 (2016). doi: 10.1038/onc.2016.104
- Pan Y., Yu Y., Wang X., and Zhang T. Tumor-associated macrophages in tumor immunity. Front. Immunol., 11, 583084 (2020). doi: 10.3389/fimmu.2020.583084
- Yunna C., Mengru H., Lei W, and Weidong C. Macrophage M1/M2 polarization. Eur. J. Pharmacol., 877, 173090 (2020). doi: 10.1016/j.ejphar.2020.173090
- Timperi E., Gueguen P., Molgora M., Magagna I., Kieffer Y., Lopez-Lastra S., Sirven P., Baudrin L. G., Baulande S., Nicolas A., Champenois G., Meseure D., Vincent-Salomon A., Tardivon A., Laas E., Soumelis V., Colonna M., Mechta-Grigoriou F., Amigorena S., and Romano E. Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression in breast cancer. Cancer Res., 82 (18), 3291-3306 (2022). doi: 10.1158/0008-5472.CAN-22-1427
- Sahai E., Astsaturov I., Cukierman E., DeNardo D. G., Egeblad M., Evans R. M., Fearon D., Greten F. R., Hingorani S. R., Hunter T., Hynes R. O., Jain R. K., JanowitzT., Jorgensen C., Kimmelman A. C., KoloninM. G., Maki R. G., Powers R. S., Puré E., Ramirez D. C., Scherz-Shouval R., Sherman M. H., Stewart S., Tlsty T. D., Tuveson D. A., Watt F. M., Weaver V., Weeraratna A. T., and Werb Z. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer, 20 (3), 174-186 (2020). doi: 10.1038/s41568-019-0238-1
- Bu L., Baba H., Yoshida N., Miyake K., Yasuda T., Uchihara T., Tan P., and Ishimoto T. Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment. Oncogene, 38 (25), 4887-4901 (2019). doi: 10.1038/s41388-019-0765-y
- Ermakov M. S., Nushtaeva A. A., Richter V. A., and Koval O. A. Cancer-associated fibroblasts and their role in tumor progression. Vavilovskii Zhurn. Genet. Selektsii, 26 (1), 14-21 (2022). doi: 10.18699/VJGB-22-03
- Zhao Q., Huang L., Qin G., Qiao Y., Ren F., Shen C., Wang S., Liu S., Lian J., Wang D., Yu W., and Zhang Y. Cancer-associated fibroblasts induce monocytic myeloid-derived suppressor cell generation via IL-6/exosomal miR-21-activated STAT3 signaling to promote cisplatin resistance in esophageal squamous cell carcinoma. Cancer Lett., 518, 35-48 (2021). doi: 10.1016/j.canlet.2021.06.009
- Gong J., Lin Y., Zhang H., Liu C., Cheng Z., Yang X., Zhang J., Xiao Y., Sang N., Qian X., Wang L., Cen X., DuX., and Zhao Y. Reprogramming of lipid metabolism in cancer-associated fibroblasts potentiates migration of colorectal cancer cells. Cell Death Dis., 11 (4), 267 (2020). doi: 10.1038/s41419-020-2434-z
- Chen B. J., Zhao J. W., Zhang D. H., Zheng A. H., and Wu G. Q. Immunotherapy of Cancer by Targeting Regulatory T cells. Int. Immunopharmacol., 104, 108469 (2021). doi: 10.1016/j.intimp.2021.108469
- Galluzzi L., Vitale I., Aaronson S. A., Abrams J. M., Adam D., Agostinis P., Alnemri E. S., Altucci L., Amelio I., Andrews D. W., Annicchiarico-Petruzzelli M., Antonov A. V., Arama E., Baehrecke E. H., Barlev N. A., Bazan N. G., Bernassola F., Bertrand M. J. M., Bianchi K., Blagosklonny M. V, Blomgren K., Borner C., Boya P., Brenner C., Campanella M., Candi E., Carmona-Gutierrez D., Cecconi F., Chan F. K., Chandel N. S., Cheng E. H., Chipuk J. E., Cidlowski J. A., Ciechanover A., Cohen G. M., Conrad M., Cubillos-Ruiz J. R., Czabotar P. E., DAngiolella V, Dawson T. M., Dawson V. L., De Laurenzi V., De Maria R., Debatin K.M., DeBerardinis R. J., Deshmukh M., Di Daniele N., Di Virgilio F., Dixit V. M., Dixon S. J., Duckett C. S., Dynlacht B. D., El-Deiry W. S., Elrod J. W., Fimia G. M., Fulda S., García-Sáez A. J., Garg A. D., Garrido C., Gavathiotis E., Golstein P., Gottlieb E., Green D. R., Greene L. A., Gronemeyer H., Gross A., Hajnoczky G., Hardwick J. M., Harris I. S., Hengartner M. O., Hetz C., Ichijo H., Jäättelä M., Joseph B., Jost P.J., Juin P. P., Kaiser W. J., Karin M., Kaufmann T., Kepp O., Kimchi A., Kitsis R. N., Klionsky D. J., Knight R. A., Kumar S., Lee S. W., Lemasters J. J., Levine B., Linkermann A., Lipton S. A., Lockshin R. A., López-Otín C., Lowe S. W., Luedde T., Lugli E., MacFarlane M., Madeo F., Malewicz M., Malorni W., Manic G., Marine J. C., Martin S. J., Martinou J. C., Medema J. P., Mehlen P., Meier P., Melino S., Miao E. A., Molkentin J. D., Moll U. M., Muñoz-Pinedo C., Nagata S., Nuñez G., Oberst A., Oren M., Overholtzer M., Pagano M., Panaretakis T., Pasparakis M., Penninger J.M., Pereira D. M., Pervaiz S., Peter M. E., Piacentini M., Pinton P., Prehn J. H. M., Puthalakath H., Rabinovich G. A., Rehm M., Rizzuto R., Rodrigues C. M. P., Rubinsztein D. C., Rudel T., Ryan K. M., Sayan E., Scorrano L., Shao F., Shi Y., Silke J., Simon H. U., Sistigu A., Stockwell B. R., Strasser A., Szabadkai G., Tait S. W. G., Tang D., Tavernarakis N., Thorburn A., Tsujimoto Y., Turk B., Vanden Berghe T., Vandenabeele P., Vander Heiden M. G., Villunger A., Virgin H. W., Vousden K. H., Vucic D., Wagner E. F., Walczak H., Wallach D., Wang Y., Wells J. A., Wood W., Yuan J., Zakeri Z., Zhivotovsky B., Zitvogel L., Melino G., and Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Difer., 25 (3), 486-541 (2018). doi: 10.1038/s41418-017-0012-4
- Kashyap D., Garg V. K., and Goel N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv. Protein Chem. Struct. Biol., 125 (73), 73-120 (2021). doi: 10.1016/bs.apcsb.2021.01.003
- Zhang D., Zhou X., Zhang K., Yu Y., Cui S. W. and Nie S. Glucomannan from Aloe vera gel maintains intestinal barrier integrity via mitigating anoikis mediated by Nrf2-mitochondria axis. Int. J. Biol. Macromol., 235, 123803 (2023). doi: 10.1016/j.ijbiomac.2023
- Li D., Park Y., Hemati H., and Liu X. Cell aggregation activates small GTPase Rac1 and induces CD44 cleavage by maintaining lipid raft integrity. J. Biol. Chem., 299 (12), 105377 (2023). doi: 10.1016/j.jbc.2023.105377
- Zhao Z., Li C., Peng Y., Liu R., and Li Q. Construction of an original anoikis-related prognostic model closely related to immune infiltration, in gastric cancer. Front. Genet. , 13, 1087201 (2023). doi: 10.3389/fgene.2022.1087201
- Bose M., Sanders A., De C., Zhou R., Lala P., Shwartz S., Mitra B., Brouwer C., and Mukherjee P. Targeting tumor-associated MUC1 overcomes anoikis-resistance in pancreatic cancer. Transl. Res., 253, 41-56 (2023). doi: 10.1016/j.trsl.2022.08.010
- Cai C., Peng Y., Shen E., Wan R., Gao L., Gao Y., Zhou Y., Huang Q., Chen Y., Liu P., Guo C., Feng Z., Zhang X., Liu Y., Shen H., Zeng S., and Han Y. Identification of tumour immune infiltration-associated snoR-NAs (TIIsno) for predicting prognosis and immune landscape in patients with colon cancer via a TIIsno score model. EBioMedicine, 76, 103866 (2022). doi: 10.1016/j.ebiom.2022.103866
- Zaitceva V, Kopeina G. S., and Zhivotovsky B. Anastasis: Return journey from cell death. Cancers (Basel), 13 (15), 3671 (2021). doi: 10.3390/cancers13153671
- Diepstraten S. T., Anderson M. A., Czabotar P. E., Lessene G., Strasser A., and Kelly G. L. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat. Rev. Cancer, 22 (1), 45-64 (2022). doi: 10.1038/s41568-021-00407-4
- Kehr S. and Vogler M. It's time to die: BH3 mimetics in solid tumors. Biochim. Biophys. Acta Mol. Cell Res., 1868 (5), 118987 (2021). doi: 10.1016/j.bbamcr.2021.118987
- Janssens S., Rennen S., and Agostinis P. Decoding immunogenic cell death from a dendritic cell perspective. Immunol. Rev., 321 (1), 350 370 (2024). doi: 10.1111/imr.13301
- Ahmed A. and Tait S. W. G. Targeting immunogenic cell death in cancer. Mol. Oncol., 14(12), 2994-3006 (2020). doi: 10.1002/1878-0261.12851
- Fucikova J., Kepp O., Kasikova L., Petroni G., Yamazaki T.., Liu P, Zhao L., Spisek R., Kroemer G., and Galluzzi L. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis., 11 (11), 1013 (2020). doi: 10.1038/s41419-020-03221-2
- Park H. H., Kim H. R., Park S. Y., Hwang S. M., HongS.M., Park S., Kang H. C., Morgan M. J., Cha J. H., Lee D., Roe J. S., and Kim Y. S. RIPK3 activation induces TRIM28 derepression in cancer cells and enhances the anti-tumor microenvironment. Mol. Cancer, 20 (1), 107 (2021). doi: 10.1186/s12943-021-01399-3
- Zhang T., Yin C., Fedorov A., Qiao L., Bao H., Beknazarov N., Wang S., Gautam A., Williams R. M., Crawford J. C., Peri S., Studitsky V., Beg A. A., Thomas P. G., Walkley C., Xu Y., Poptsova M., Herbert A., and Balachandran S. ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis. Nature, 606 (7914), 594-602 (2022). doi: 10.1038/s41586-022-04753-7
- Yan J., Wan P., Choksi S., and Liu Z. G. Necroptosis and tumor progression. Trends Cancer, 8 (1), 21-27 (2022). doi: 10.1016/j.trecan.2021.09.003
- Du T., Gao J., Li P., Wang Y., Qi Q., Liu X., Li J., Wang C., and Du L. Pyroptosis, metabolism, and tumor immune microenvironment. Clin. Transl. Med., 11 (8), e492 (2021). doi: 10.1002/ctm2.492
- Wang Q., Wang Y., Ding J., Wang C., Zhou X., Gao W., Huang H., Shao F., and Liu Z. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature, 579 (7799), 421-426 (2020). doi: 10.1038/s41586-020-2079-1
- Wei X., Xie F., Zhou X., Wu Y., Yan H., Liu T., Huang J., Wang F., Zhou F., and Zhang L. Role of pyroptosis in inflammation and cancer. Cell. Mol. Immunol., 19 (9), 971 992 (2022). doi: 10.1038/s41423-022-00905-x
- Torres-Velarde J. M., Allen K. N., Salvador-Pascual A., Leija R. G., Luong D., Moreno-Santillán D. D., Ensminger D. C., and Vázquez-Medina J. P. Peroxiredoxin 6 suppresses ferroptosis in lung endothelial cells. Free Radic. Biol. Med., 218, 82-93 (2024). doi: 10.1016/j.freeradbiomed.2024.04.208
- Chen X., Zhang L., He Y., Huang S., Chen S., Zhao W., and Yu D. Regulation of m6A modification on ferroptosis and its potential significance in radiosensitization. Cell Death Dis., 9 (1), 343 (2023). doi: 10.1038/s41420-023-01645-1
- Lei G., Zhuang L., and Gan B. The roles of ferroptosis in cancer: Tumor suppression, tumor microenvironment, and therapeutic interventions. Cancer cell, 42 (4), 513-534 (2024). doi: 10.1016/j.ccell.2024.03.011
- Shen D., Luo J., Chen L., Ma W., Mao X., Zhang Y., Zheng J., Wang Y., Wan J., Wang S., Ouyang J., Yi H., Liu D., Huang W., Zhang W., Liu Z., McLeod H. L., and He Y. PARPi treatment enhances radiotherapy-induced ferroptosis and antitumor immune responses via the cGAS signaling pathway in colorectal cancer. Cancer Lett., 550, 215919 (2022). doi: 10.1016/j.canlet.2022.215919
- Zhao L., Zhou X., Xie F., Zhang L., Yan H., Huang J., Zhang C., Zhou F., Chen J., and Zhang L. Ferroptosis in cancer and cancer immunotherapy. Cancer Commun. (Lond.), 42 (2), 88-116 (2022). doi: 10.1002/cac2.12250
- Yan Y. and Gan B. Hyperoxidized PRDX3 as a specific ferroptosis marker. Life Metab., 2 (6), load042 (2023). doi: 10.1093/lifemeta/load042
- Yao L. C., Aryee K. E., Cheng M., Kaur P., Keck J. G., and Brehm M. A. Creation of PDX-bearing humanized mice to study immuno-oncology. Methods Mol. Biol., 1953, 241-252 (2019). doi: 10.1007/978-1-4939-9145-7_15
- Tian H., Lyu Y., Yang Y. G., and Hu Z. Humanized rodent models for cancer research. Front. Oncol., 10, 1696 (2020). doi: 10.3389/fonc.2020.01696
- Fiorini E., Veghini L., and Corbo V. Modeling cell communication in cancer with organoids: Making the complex simple. Front. Cell Dev. Biol., 8, 166 (2020). doi: 10.3389/fcell.2020.00166
- Zheng D., Li J., Yan H., Zhang G., Li W., Chu E., and Wei N. Emerging roles of Aurora-A kinase in cancer therapy resistance. Acta Pharm. Sin. B, 13 (7), 2826-2843 (2023). doi: 10.1016/j.apsb.2023.03.013
- Hill R. M., Fok M., Grundy G., Parsons J. L., and Rocha S. The role of autophagy in hypoxia-induced radioresistance. Radiother. Oncol., 189, 109951 (2023). doi: 10.1016/j.radonc.2023.109951
- He L., Yu X., and Li W. Recent progress and trends in X-ray-induced photodynamic therapy with low radiation doses. ACS Nano, 16 (12), 19691-19721 (2022). doi: 10.1021/acsnano.2c07286
- Pan Y, Zhu Y, Xu C, Pan C, Shi Y, Zou J, Li Y, Hu X, Zhou B, Zhao C, Gao Q, Zhang J, Wu A, Chen X, and LiJ. Biomimetic Yolk-Shell nanocatalysts for activatable dual-modal-image-guided triple-augmented chemodynamic therapy of cancer. ACS Nano, 16 (11), 1903819052 (2022). doi: 10.1021/acsnano.2c08077
- Caverzán M. D., Beaugé L., Chesta C. A., Palacios R. E., and Ibarra L. E. Photodynamic therapy of Glioblastoma cells using doped conjugated polymer nanoparticles: An in vitro comparative study based on redox status. J. Photochem. Photobiol. B, 212, 112045 (2020). doi: 10.1016/j.jphotobiol.2020.112045
- Gudkov S. V., Shilyagina N. Y., Vodeneev V. A. and Zvyagin A. V. Targeted radionuclide therapy of human tumors. Int. J. Mol. Sci., 17 (1), 33 (2015). doi: 10.3390/ijms17010033
- Su S. and Kang P. Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics, 12, 837 (2020). doi: 10.3390/pharmaceutics12090837
- Fujita H., Ohta S., Nakamura N., Somiya M. and Horie M. Progress of endogenous and exogenous nanoparticles for cancer therapy and diagnostics. Genes (Basel), 14 (2), 259 (2023). doi: 10.3390/genes14020259
- Li J., Wu T., Li S., Chen X., Deng Z., and Huang Y. Nanoparticles for cancer therapy: a review of influencing factors and evaluation methods for biosafety. Clin. Translat. Oncol., 25 (7), 2043-2055 (2023). doi: 10.1007/s12094-023-03117-5
- Sun L., Liu H., Ye Y., Lei Y., Islam R., Tan S., Tong R., Miao Y. B., and Cai L. Smart nanoparticles for cancer therapy. Signal Transduct. Target. Ther., 8 (1), 418 (2023). doi: 10.1038/s41392-023-01642-x
- Tan G. R., Hsu C. S., and Zhang Y. pH-Responsive hybrid nanoparticles for imaging spatiotemporal ph changes in biofilm-dentin microenvironments. ACS Appl. Mater. Interfaces, 13, 46247-46259 (2021). doi: 10.1021/acsami.1c11162
- Xie N., Shen G., Gao W., Huang Z., Huang C., and Fu L. Neoantigens: promising targets for cancer therapy. Signal Transduct. Target. Ther., 8, 9 (2023). doi: 10.1038/s41392-022-01270-x
- Gisbert-Garzarán M., Berkmann J. C., Giasafaki D., Lozano D., Spyrou K., Manzano M., Steriotis T., Duda G. N.., Schmidt-Bleek K., Charalambopoulou G., and Vallet-Regí M. Engineered pH-responsive mesoporous carbon nanoparticles for drug delivery. ACS Appl. Mater. Interfaces, 12, 14946-14957 (2020). doi: 10.1021/acsami.0c01786
- Ge L., Qiao C., Tang Y., Zhang X., and Jiang X. Light-activated hypoxia-sensitive covalent organic framework for tandem-responsive drug delivery. Nano Lett., 21, 3218-3224 (2021). doi: 10.1021/acs.nanolett.1c00488
- Jin J. and Zhao Q. Engineering nanoparticles to reprogram radiotherapy and immunotherapy: recent advances and future challenges. J. Nanobiotechnol., 18, 75 (2020). doi: 10.1186/s12951-020-00629-y
- Roy I., Krishnan S., Kabashin A. V., Zavestovskaya I. N., and Prasad P. N. Transforming nuclear medicine with nanoradiopharmaceuticals. ACS Nano, 16, 5036-5061 (2022). doi: 10.1021/acsnano.1c10550
- Domańska I. M., Figat R., Zalewska A., Cieśla K., Kowalczyk S., Kędra K., and Sobczak M. The influence of ionizing radiation on paclitaxel-loaded nanoparticles based on PLGA. Appl. Sci., 13 (19), 11052 (2023). doi: 10.3390/app131911052
补充文件
