Relaxation of Conditions for Convergence of Dynamic Regressor Extension and Mixing Procedure
- Authors: Glushchenko A.I1, Lastochkin K.A1
-
Affiliations:
- Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
- Issue: No 1 (2023)
- Pages: 23-62
- Section: Nonlinear systems
- URL: https://ter-arkhiv.ru/0005-2310/article/view/646801
- DOI: https://doi.org/10.31857/S0005231023010026
- EDN: https://elibrary.ru/LUAPNM
- ID: 646801
Cite item
Abstract
A generalization of the dynamic regressor extension and mixing procedure is proposed, which, unlike the original procedure, first, guarantees a reduction of the unknown parameter identification error if the requirement of regressor semi-finite excitation is met, and second, it ensures exponential convergence of the regression function (regressand) tracking error to zero when the regressor is semi-persistently exciting with a rank one or higher.
About the authors
A. I Glushchenko
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: aiglush@ipu.ru
Moscow, Russia
K. A Lastochkin
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Author for correspondence.
Email: lastconst@yandex.ru
Moscow, Russia
References
- Ortega R., Nikiforov V., Gerasimov D. On Modified Parameter Estimators for Identification and Adaptive Control. A Unified Framework and Some New Schemes // Annual Reviews in Control. 2020. V. 50. P. 278-293.
- Aranovskiy S., Bobtsov A., Ortega R., Pyrkin A. Performance Enhancement of Parameter Estimators via Dynamic Regressor Extension and Mixing // IEEE Trans. Automat. Control. 2016. V. 62, No. 7. P. 3546-3550.
- Glushchenko A.I., Petrov V.A., Lastochkin K.A. I-DREM: Relaxing the Square Integrability Condition // Autom. Remote Control. 2021. V. 82. No. 7. P. 1233-1247.
- Korotina M., Romero J.G., Aranovskiy S., Bobtsov A., Ortega R. A New On-Line Exponential Parameter Estimator without Persistent Excitation // Sys. Control Letters. 2022. V. 159. P. 1-10.
- Wang L., Ortega R., Bobtsov A., Romero J.G., Yi B. Identifiability implies robust, globally exponentially convergent on-line parameter estimation: Application to model reference adaptive control // arXiv preprint arXiv:2108.08436. 2021. P. 1-16.
- Wang J., Efimov D., Aranovskiy S., Bobtsov A. Fixed-Time Estimation of Parameters for Non-Persistent Excitation // European J. Control. 2020. V. 55. P. 24-32.
- Yi B., Ortega R. Conditions for convergence of dynamic regressor extension and mixing parameter estimators using LTI filters // IEEE Trans. Automat. Control. 2022. P. 1-6.
- Aranovskiy S., Ushirobira R., Korotina M., Vedyakov A. On preserving-excitation properties of Kreisselmeiers regressor extension scheme // IEEE Trans. Automat. Control. 2022. P. 1-6.
- Sastry S., Bodson M. Adaptive Control - Stability, Convergence, and Robustness. N.J.: Prentice Hall, 1989.
- Kreisselmeier G., Rietze-Augst G. Richness and Excitation on an Interval-with Application to Continuous-Time Adaptive Control // IEEE Trans. Automat. Control. 1990. V. 35. No. 2. P. 165-171.
- Roy S.B., Bhasin S. Novel Model Reference Adaptive Control Architecture Using Semi-Initial Excitation-Based Switched Parameter Estimator // Int. J. Adaptive Control Signal Proc. 2019. V. 33. No. 12. P. 1759-1774.
- Glushchenko A., Lastochkin K. Robust Time-Varying Parameters Estimation Based on I-DREM Procedure // IFAC-PapersOnLine. 2022. V. 55. No. 12. P. 91-96.
- Ovcharov A., Vedyakov A., Kazak S., Bespalov V., Pyrkin A., Bobtsov A. Flux Observer for The Levitated Ball with Relaxed Excitation Conditions // Proc. European Control Conf. 2021. P. 2334-2339.
- Ovcharov A., Vedyakov A., Kazak S., Pyrkin A. Overparameterized model parameter recovering with finite-time convergence // Int. J. Adapt. Control. Signal Process. 2022. P. 1305-1325.
- Tihonov A.N. Solution of incorrectly formulated problems and the regularization method // Soviet Math. 1963. V. 4. P. 1035-1038.
- Hansen P.C. The Truncated SVD as a Method For Regularization // BIT Num. Math. 1987. V. 27. No. 4. С. 534-553.
- Meyer C.D. Matrix Analysis and Applied Linear Algebra. Siam, 2000.
- Glushchenko A.I., Lastochkin K.A., Petrov V.A. Normalization of Regressor Excitation in the Dynamic Extension and Mixing Procedure // Autom. Remote Control. 2022. Vol. 83. No. 1. P. 17-31.
Supplementary files
