Метод автоматического позиционирования беспилотных аппаратов на основе распознавания сигнальных радиально-симметричных маркеров подводных целей

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Описывается метод автоматического распознавания целевых точек траекторий беспилотных аппаратов, перемещающихся под водой, таких как автономные подводные аппараты и летающие подводные аппараты самолетоподобных конструкций. В качестве терминальной точки управления рассматривается координата центра объекта, обладающего свойствами радиальной симметрии. Предложен метод построения многомасштабной весовой модели изображения на основе разработанного преобразования быстрой радиальной симметрии и метода Хафа, что обеспечивает устойчивость к шумам и высокую скорость вычисления координат искомой точки. Для случая, когда объект интереса задан контуром определенного цвета, предложена модель на основе хроматической и весовой составляющих. В качестве примера детектирования приведен алгоритм обнаружения базовой подводной станции со световыми маркерами в виде сигнального люминесцирующего кольца.

Об авторах

Р. М Шакирзянов

Казанский национальный исследовательский технический университет им. А.Н. Туполева

Email: rmshakirzyanov@kai.ru
Казань

М. П. Шлеймович

Казанский национальный исследовательский технический университет им. А.Н. Туполева

Email: mpshleymovich@kai.ru
Казань

С. В. Новикова

Казанский национальный исследовательский технический университет им. А.Н. Туполева;Мордовский государственный университет им. Н.П. Огарева

Автор, ответственный за переписку.
Email: svnovikova@kai.ru
Казань

Список литературы

  1. Liguo T., Shenmin S., Xiaoyan Y., Jianwen S. An overview of marine recovery methods of UAV for small ships // J. Harbin Institute Technol. 2019. V. 51. No. 10. P. 1-10.
  2. Chamola V., Kotesh P., Agarwal A., Naren, Gupta N., Guizani M. A Comprehensive Review of Unmanned Aerial Vehicle Attacks and Neutralization Techniques // Ad Hoc Networks. 2021. V. 111. P. 102324. https://doi.org/10.1016/j.adhoc.2020.102324
  3. ГОСТ Р 56829-2015 Интеллектуальные транспортные системы. Термины и определения, ГОСТ Р от 10 декабря 2015 года № 56829-2015.
  4. Albeaino G., Gheisari M., Franz B. A Systematic Review of Unmanned Aerial Vehicle Application Areas and Technologies in the AEC Domain // J. of Inform. Technol. Construct. 2019. V. 24. P. 381-405.
  5. Hajiyev C., Soken H.E., Vural S.V. Navigation Systems for Unmanned Aerial Vehicles // State Estimation and Control for Low-cost Unmanned Aerial Vehicles. 2015. P. 25-49. https://doi.org/10.1007/978-3-319-16417-5_3
  6. Moiseev V.S., Shafigullin R.R., Gushchina D.S. Rational Placement and Required Number of Information Unmanned Aerial Systems for On-Line Monitoring of Large Territories // Russian Aeronautics. 2012. V. 55. P. 223-229. https://doi.org/10.3103/S1068799812030014
  7. Neira J., Sequeiros C., Huaman R., Machaca E., Fonseca P., Nina W. Review on Unmanned Underwater Robotics, Structure Designs, Materials, Sensors, Actuators, and Navigation Control // J. Robot. 2021. P. 1-26. https://doi.org/10.1155/2021/5542920
  8. Колесников М.П., Мартынова Л.А., Пашкевич И.В., Шелест П.С. Метод позиционирования автономного необитаемого подводного аппарата в процессе приведения к причальному устройству // Изв. ТулГУ. Технические науки. 2015. № 11-2. C. 38-49.
  9. Qiu S., Cui W. An Overview on Aquatic Unmanned Aerial Vehicles // Ann. Rev. Res. 2019. V. 5. No. 3. P. 555663. https://doi.org/10.19080/ARR.2019.05.555663
  10. Popescu D., Ichim L. Image Recognition in UAV Application Based on Texture Analysis // Advanced Concepts for Intelligent Vision Systems. ACIVS 2015. Lecture Notes in Computer Science. 2015. V. 9386. https://doi.org/10.1007/978-3-319-25903-1_60
  11. Samadzadegan F., Dadrass Javan F., Ashtari Mahini F., Gholamshahi M. Detection and Recognition of Drones Based on a Deep Convolutional Neural Network Using Visible Imagery // Aerospace. 2022. V. 9. No. 1. P. 31. https://doi.org/10.3390/aerospace9010031
  12. Fujiyoshi H., Hirakawa T., Yamashita T. Deep Learning-Based Image Recognition for Autonomous Driving // IATSS Res. 2019. V. 43. No. 1. P. 244-252. https://doi.org/10.1016/j.iatssr.2019.11.008
  13. Севостьянов И.Е., Девитт Д.В. Система визуального позиционирования многороторных беспилотников для совершения высокоточной автономной посадки // Science Time. 2021. № 90. C. 38-42.
  14. Степанов Д.Н. Методы и алгоритмы определения положения и ориентации беспилотного летательного аппарата с применением бортовых видеокамер // Программные продукты и системы. 2014. № 1. С. 150-157.
  15. Deltheil C., Didier L., Hospital E., Brutzman D.P. Simulating an Optical Guidance System for the Recovery of an Unmanned Underwater Vehicle // IEEE J. Ocean. Engineer. 2000. V. 25. No. 4. P. 568-574. https://doi.org/10.1109/48.895364
  16. Guo D., Bacciaglia A., Simpson M., Bil C., Marzocca P. Design and Development a Bimodal Unmanned System // AIAA Scitech 2019 Forum. 2019. P. 1-7. https://doi.org/10.2514/6.2019-2096
  17. Pinheiro P.M., Neto A.A., Grando R.B., Silva C.B. da, Aoki Vivian M., Cardoso D.S., Horn A.C., Drews P.L.J. Trajectory Planning for Hybrid Unmanned Aerial Underwater Vehicles with Smooth Media Transition // J. Intelligent Robot. Syst. 2022. V. 104. No. 46. https://doi.org/10.1007/s10846-021-01567-z
  18. Lock R.J., Vaidyanathan R., Burgess S.C., Loveless J. Development of a Biologically Inspired Multi-Modal Wing Model for Aerial-Aquatic Robotic Vehicles through Empirical and Numerical Modelling of the Common Guillemot, Uria Aalge // Bioinspirat. Biomimetics. 2010. V. 5. No. 4. P. 1-15. https://doi.org/10.1088/1748-3182/5/4/046001
  19. Wu Y., Li L., Su X., Gao B. Dynamics Modeling and Trajectory Optimization for Unmanned Aerial-Aquatic Vehicle Diving into the Water // Aerospace Sci. Technol. 2019. V. 89. P. 220-229. https://doi.org/10.1016/j.ast.2019.04.004
  20. Liu S., Ozay M., Okatani T., Xu H., Sun K., Lin Y. Detection and Pose Estimation for Short-Range Vision-Based Underwater Docking // IEEE Access. 2019. V. 30. No. 7. P. 2720-2749. https://doi.org/10.1109/ACCESS.2018.2885537
  21. Cowen S., Briest S., Dombrowski J. Underwater Docking of Autonomous Undersea Vehicles Using Optical Terminal Guidance // Oceans '97. MTS/IEEE Conference Proceedings, Halifax, NS, Canada. 1997. V. 2. P. 1143-1147. https://doi.org/10.1109/OCEANS.1997.624153
  22. Negre A., Pradalier C., Dunbabin M. Robust Vision-Based Underwater Homing Using Self-Similar Landmarks // J. Field Robot. 2008. V. 25. No. 6-7. P. 360-377. https://doi.org/10.1002/rob.20246
  23. Ghosh S., Ray R., Vadali S.R.K., Shome S.N., Nandy S. Reliable Pose Estimation of Underwater Dock Using Single Camera: A Scene Invariant Approach // Machine Vision Appl. 2016. V. 27. No. 2. P. 221-236. https://doi.org/10.1007/s00138-015-0736-4
  24. Li Y., Jiang Y., Cao J., Wang B., Li Y. AUV Docking Experiments Based on Vision Positioning Using Two Cameras // Ocean Engineer. 2015. V. 110. P. 163-173.
  25. Чичкарев Е., Сергиенко А., Балалаева Е. Использование моделей машинного обучения и сетей глубокого обучения для распознавания рукописных чисел и букв русского и латинского алфавитов // InterConf. Prague, Czech Republic. 2021. P. 363-380. https://doi.org/10.51582/interconf.21-22.11.2021.044
  26. Сирота А.А., Митрофанова Е.Ю., Милованова А.И. Анализ алгоритмов поиска объектов на изображениях с использованием различных модификаций сверточных нейронных сетей // Вестник ВГУ. Серия: Системный анализ и информационные технологии. 2019. № 3. С. 123-137. https://doi.org/10.17308/sait.2019.3/1313
  27. Zou Z., Shi Z., Guo Y., Ye J. Object Detection in 20 Years: A Survey // Proceedings of the IEEE. 2019. No. 111. P. 257-276.
  28. Клетеник Д.В. Сборник задач по аналитической геометрии. М.: Наука, Физматлит, 1998.
  29. Gonzalez R.C., Woods R.E. Digital Image Processing. Third Edition. London: Pearson, 2007.
  30. Hough P.V.C. Machine Analysis of Bubble Chamber Pictures // 2nd International Conference on High-Energy Accelerators and Instrumentation, HEACC 1959. CERN, Geneva, Switzerland. 1959. P. 554-558.
  31. Lyasheva S., Shleymovich M., Shakirzyanov R. The Image Analysis Using Fast Radial Symmetry Transform in Control Systems Base on the Computer Vision // International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon. 2019. P. 1-6. https://doi.org/10.1109/FarEastCon.2019.8934298
  32. Shakirzyanov R.M. Detection of Traffic Signals Using Color Segmentation and a Radial Symmetry Detector // Bulletin of the Voronezh State Technical University. 2020. V. 16. No. 6. P. 25-33.
  33. Adelson E., Burt P., Anderson C., Ogden J.M., Bergen J. Pyramid Methods in Image Processing // RCA Engineer. 1984. V. 29. No. 6. P. 33-41.
  34. O'Malley R., Jones E., Glavin M. Rear-Lamp Vehicle Detection and Tracking in Low-Exposure Color Video for Night Conditions // IEEE Transactions on Intelligent Transportation Systems. 2010. V. 11. No. 2. P. 453-462. https://doi.org/10.1109/TITS.2010.2045375
  35. Друки А.А. Алгоритмы выделения лиц на статических RGB изображениях и в видеопотоке // Изв. ТПУ. 2012. № 5. С. 65-69.
  36. Darge A., Rajendran R.S., Zerihum D., Chung P.Y.K. Multi Color Image Segmentation using L*A*B* Color Space // Int. J. Advanced Engineer., Management Sci. 2019. V. 5. P. 346-352. https://doi.org/10.22161/ijaems.5.5.8
  37. Forsyth D., Ponce J.Computer Vision: A Modern Approach. London: Pearson, 2012.
  38. Droogenbroeck V.M., Barnich O. Design of Statistical Measures for the Assessment of Image Segmentation Schemes // Proceedings of 11th International Conference on Computer Analysis of Images and Patterns (CAIP2005), Lecture Notes in Computer Science. Rocancourt, France, 2005. V. 3691. P. 280-287.
  39. Кольцов П.П., Осипов А.С., Куцаев А.С., Кравченко А.А., Котович Н.В., Захаров А.В. О количественной оценке эффективности алгоритмов анализа изображений // Компьютерная оптика. 2015. Т. 39, № 4. С. 542-556.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023