Universal Method of Static Output Feedback Pole Placement for Fourth-Order Linear Time-Invariant Systems with Two Inputs and Two Outputs

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A universal analytical method of static output feedback pole placement for fourth-order linear time-invariant systems with two control inputs and two observe outputs is suggested, regardless the relations between controllability and observability indices. The method does not require decomposing or reducing a system and may be implied to any fourth-order systems modally controllable by static output feedback, including the systems irreducible to control (observation) with a single input (output). The method is based on linear matrix dependence of a closed-loop control system characteristic polynomial on coefficients and determinant of a matrix of controller by output. The suggesting approach gives the necessary and sufficient condition for static output feedback pole placement – it allows defining all possible matrices of controllers by output and the conditions of their existence. A new algebraic criterion of complete modal controllability by output is formulated and proved. Examples of the approach application to controlling the aviation and space systems based on linearized models both in numerical and symbolic form are given.

Full Text

Restricted Access

About the authors

N. E. Zubov

Bauman Moscow State Technical University

Author for correspondence.
Email: nik.zubov@gmail.com
Russian Federation, Moscow

A. V. Lapin

Bauman Moscow State Technical University

Email: nik.zubov@gmail.com
Russian Federation, Moscow

References

  1. Zubov N.E., Mikrin E.A., Ryabchenko V.N., Proletarskii A.V. Analytical Synthesis of Control Laws for Lateral Motion of Aircraft // Russian Aeronautics. 2015. V. 58. Iss. 3. P. 263–270. https://doi.org/10.3103/S1068799815030034
  2. Zubov N.E., Ryabchenko V.N., Sorokin I.V. Output Control of the Longitudinal Motion Spectrum of a Single-Rotor Helicopter // Russian Aeronautics. 2020. V. 63. Iss. 2. P. 249–259. https://doi.org/10.3103/S1068799820030319
  3. Zubov N.E., Mikrin E.A., Ryabchenko V.N., Fomichev A.V. Synthesis of Control Laws for Aircraft Lateral Motion at the Lack of Data on the Slip Angle: Analytical Solution // Russian Aeronautics. 2017. V. 60. Iss. 1. P. 64–73. https://doi.org/10.3103/S106879981701010X
  4. Lapin A.V., Zubov N.E. Minimization of Control Signals at Stabilizing Spatial Motion of a Maneuverable Aircraft // Intern. Russian Automation Conf. Sochi, 2020. P. 202–208. https://doi.org/10.1109/RusAutoCon49822.2020.9208159
  5. Zubov N.E., Lapin A.V., Mikrin E.A., Ryabchenko V.N. Output Control of the Spectrum of a Linear Dynamic System in Terms of the Van der Woude Method // Doklady Mathematics. 2017. V. 96. Iss. 2. P. 457–460. https://doi.org/10.1134/S1064562417050179
  6. Van der Woude J.W. A Note on Pole Placement by Static Output Feedback for Single-Input Systems // Systems & Control Letters. 1988. V. 11. Iss. 4. P. 285–287. https://doi.org/10.1016/0167-6911(88)90072-2
  7. Лапин А.В., Зубов Н.Е. Стабилизация орбитальной ориентации космического аппарата во взаимосвязанных каналах крена и рысканья при отсутствии измерений угла и угловой скорости рысканья // XLVII Академические чтения по космонавтике. М.: Изд-во МГТУ им. Н.Э. Баумана, 2023. Т. 3. С. 146–149.
  8. Лапин А.В., Зубов Н.Е., Пролетарский А.В. Обобщение формулы Аккермана для некоторого класса многомерных динамических систем с векторным входом // Вестн. МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2023. № 4 (109). С. 18–38. https://doi.org/10.18698/1812-3368-2023-4-18-38
  9. Zubov N.E., Lapin A.V. Reducing the Problem of the Modal Control by Output for Stationary Forth-Order Systems with Two Inputs and Two Outputs to the Control by State for a System with a Single Input // J. Comput. Syst. Sci. Int. 2023. V. 62. Iss. 1. P. 43–60. https://doi.org/10.1134/S1064230723010124
  10. Zubov N.E., Zybin E.Yu., Lapin A.V. Analytical Synthesis of an Aircraft’s Lateral Motion Control by Output at the Lack of Measurements of Slip and Roll Angles // J. Comput. Syst. Sci. Int. 2023. V. 62. Iss. 2. P. 354–361. https://doi.org/10.1134/S1064230723020193
  11. Zubov N.E., Lapin A.V. On One Approach to the Analytic Synthesis of Modal Control by Output for Fourth-Order Dynamic Systems with Two Inputs and Two Outputs // J. Comput. Syst. Sci. Int. 2024. V. 63. Iss. 4. P. 561–577. https://doi.org/10.1134/S1064230724700424
  12. Zubov N.E., Lapin A.V., Mikrin E.A. Synthesis of Decoupling Laws for Controlling the Angular Motion of Landing Module with Solid-Fuel Landing Engine Minimizing the Transient Time // J. Comput. Syst. Sci. Int. 2013. V. 52. Iss. 3. P. 480–490. https://doi.org/10.1134/S1064230713030179
  13. Zubov N.E., Lapin A.V., Ryabchenko V.N. Analytical Synthesis of a Modal Controller by Output Vector for Attitude Control of a Descent Module during its Descent in the Earth’s Atmosphere // Russian Aeronautics. 2019. V. 62. Iss. 3. P. 401–416. https://doi.org/10.3103/S1068799819030073
  14. Glasov V.V., Kosyanchuk V.V., Lapin A.V., Zybin E.Yu., Karpenko S.S., Lelikov A.M. Reconfiguration of High-Speed Rotorcraft Flight Control System by Data-Based Methods Under Disturbances // XX Technical Scientific Conf. on Aviation Dedicated to the Memory of N. E. Zhukovsky. Moscow, 2023. P. 13–17. https://doi.org/10.1109/TSCZh58792.2023.10233429
  15. Lapin A.V., Zubov N.E. Generalization of Bass – Gura Formula for Linear Dynamic Systems with Vector Control // Herald of the Bauman Moscow State Technical University, Series Natural Sciences. 2020. V. 89. Iss. 2. P. 41–64. https://doi.org/10.18698/1812-3368-2020-2-41-64
  16. Желтов С.Ю., Каляев И.А., Косьянчук В.В., Мельник Э.В., Зыбин Е.Ю. Реконфигурация систем управления воздушных судов. М.: РАН, 2021. 204 с.
  17. Зубов Н.Е., Микрин Е.А., Рябченко В.Н. Матричные методы в теории и практике систем автоматического управления летательных аппаратов. М.: Изд-во МГТУ им. Н.Э. Баумана, 2016. 666 с.
  18. Bass R.W., Gura I. High Order System Design via State-Space Considerations // IEEE Transactions on Autom. Control. 1965. V. 3. Iss. 3. P. 311–318. https://doi.org/10.1109/JACC.1965.4168784
  19. Lapin A.V., Zubov N.E., Proletarskii A.V. Parametric Minimization of Controller Matrix Norm at Stabilizing Spatial Motion of a Maneuverable Aircraft // 7th Intern. Conf. on Control, Decision and Information Technologies. Prague, Czech Republic, 2020. P. 415–420. https://doi.org/10.1109/CoDIT49905.2020.9263844
  20. Borisenko N.Yu., Sumarokov A.V. On the Rapid Orbital Attitude Control of Manned and Cargo Spacecraft Soyuz MS and Progress MS // J. Comput. Syst. Sci. Int. 2017. V. 56. Iss. 5. P. 886–895. https://doi.org/10.1134/S1064230717050033

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences