Стабилизация полярного состояния KNO3 в композитах (KNO3)1–x / (CeO2)x
- Авторы: Павлов А.В.1, Стукова Е.В.1, Барышников С.В.2
-
Учреждения:
- Амурский государственный университет
- Благовещенский государственный педагогический университет
- Выпуск: Том 60, № 7 (2024)
- Страницы: 876-881
- Раздел: Статьи
- URL: https://ter-arkhiv.ru/0002-337X/article/view/679371
- DOI: https://doi.org/10.31857/S0002337X24070118
- EDN: https://elibrary.ru/LQSKTY
- ID: 679371
Цитировать
Аннотация
Приводятся результаты диэлектрических исследований сегнетоэлектрических композитов (KNO3)1–x / (CeO2)x с целью выявления влияния оксида церия на стабильность полярного состояния нитрата калия. Показано, что увеличение доли CeO2 до 0.25 < x < 0.35 в составе композита (KNO3)1–x / (CeO2)x приводит к временной стабилизации сегнетоэлектрического состояния. Основным механизмом взаимодействия оксидов металлов с нитратами является образование двойного электрического слоя на границе раздела частиц за счет различных энергий адсорбции отрицательных и положительных ионов.
Ключевые слова
Полный текст

Об авторах
А. В. Павлов
Амурский государственный университет
Email: lenast@bk.ru
Россия, Игнатьевское ш., 21, Благовещенск, Амурская обл., 675028
Е. В. Стукова
Амурский государственный университет
Автор, ответственный за переписку.
Email: lenast@bk.ru
Россия, Игнатьевское ш., 21, Благовещенск, Амурская обл., 675028
С. В. Барышников
Благовещенский государственный педагогический университет
Email: lenast@bk.ru
Россия, ул. Ленина, 104, Благовещенск, Амурская обл., 675004
Список литературы
- Scott J.F. Ferroelectric Memories // Springer Series in Advanced Microelectronics. 2000. V. 3. 248 p. https://doi.org/10.1007/978-3-662-04307-3
- Стукова Е.В., Барышников С.В. Стабилизация сегнетоэлектрической фазы в композитах (KNO3)1–x – (BaTiO3)x // Перспективные материалы. 2011. № 2. С. 28–33.
- Shimada S., Aoki T. Stabilization of the Ferroelectric γ-Phase of KNO3 by Doping with Na+, Determined by the Acoustic Emission Method // Chem. Lett. 1996. V. 25. № 5. P. 393–394. https://doi.org/10.1246/cl.1996.393
- Liang C.C. Conduction Characteristics of the Lithium Iodide‐Aluminum Oxide Solid Electrolytes // J. Electrochem. Soc. 1973. V. 120. № 10. P. 1289–1292. https://doi.org/10.1149/1.240324
- Uvarov N.F., Hairetdinov E.F., Skobelev I.V. Composite Solid Electrolytes MeNO3-Al2O3 (Me = Li, Na, K) // Solid State Ionics. 1996. V. 86–88. P. 577–580. https://doi.org/10.1016/0167-2738(96)00208-1
- Uvarov N.F., Vaněk P. Stabilization of New Phases in Ion-Conducting Nanocomposites // J. Mater. Synth. Process. 2000. V. 8. P. 319–326. https://doi.org/10.1023/A:1011346528527
- Milinskiy A.Yu., Baryshnikov S.V., Zeeva A.A. Dielectric Properties of Ferroelectric Composite (KNO3)(1–x)/(RbNO3)x // St. Petersburg State Polytechn. Univ. J. Phys. Math. 2023. V. 16. № 1.1. P. 38–42. https://doi.org/10.18721/JPM.161.106
- Барышников С.В., Милинский А.Ю., Стукова Е.В., Зеева А.А. Стабилизация сегнетоэлектрической фазы нитрата калия в композите [KNO3]1–x/[Ba(NO3)2]x // Изв. вузов. Физика. 2023. Т. 66. № 12. С. 22–29. https://doi.org/10.17223/00213411/66/12/3
- Барышников С.В., Милинский А.Ю. Стабилизация полярной фазы нитрата калия, внедренного в нанопористую матрицу титаната бария // Физика твердого тела. 2024. Т.66. № 5. С. 747–751. https://doi.org/10.61011/FTT.2024.05.58080.98
- Chen A., Chernow F. Nature of Ferroelectricity in KNО3 // Phys. Rev. 1967. V. 154. № 2. P. 493–505. https://doi.org/10.1103/PhysRev.154.493.
- Nimmo J.K., Lucas B.W. The Crystal Structures of γ- and β-KNO3 and the α←γ←β Phase Transformations // Acta Crystallogr., Sect. B. 1976. V. 32. № 7. P. 1968–1971. https://doi.org/10.1107/S0567740876006894
- Deshpande V.V., Karkhanavala M.D., Rao U.R.K. Phase Transitions in Potassium Nitrate // J. Therm. Anal. Calorim. 1974. V. 6. P. 613–621. https://doi.org/10.1007/BF01911781
- Balakrishnan G., Panda A.K., Raghavan C.M., Singh A., Prabhakar M.N, Mohandas E., Kuppusami P., Jung il Song. Microstructure, Optical and Dielectric Properties of Cerium Oxide Thin Films Prepared by Pulsed Laser Deposition // J. Mater. Sci. Mater. Electron. 2019. V. 30. P. 16548–16553. https://doi.org/10.1007/s10854-019-02031-3
- Ikeda S., Kominami H., Koyama K., Wada Ya. Nonlinear Dielectric Constant and Ferroelectric-to-Paraelectric Phase Transition in Copolymers of Vinylidene Fluoride and Trifluoroethylene // J. Appl. Phys. 1987. V. 62. № 8. P. 3339–3342. https://doi.org/10.1063/1.339294
- Miga S., Dec J., Kleemann W. Computer-controlled Susceptometer for Investigating the Linear and Nonlinear Dielectric Response // Rev. Sci. Instrum. 2007. V. 78. № 3. P. 033902. https://doi.org/10.1063/1.2712792
- Alekseeva O.A., Naberezhnov A.A., Stukova E.V., Franz A., Baryshnikov S.V. Temperature Range Broadening of the Ferroelectric Phase in KNO3 Nanoparticles Embedded in the Pores of the Nanoporous Al2O3 Matrix // Ferroelectrics. 2021. V. 574. № 1. P. 8–15. https://doi.org/10.1080/00150193.2021.1888043
- Milinskiy A.Yu., Baryshnikov S.V., Charnaya E.V., Chernechkin I.A., Uskova N.I. Coexistence of Ferroelectric and Paraelectric KNO3 Phases in Carbon Nanotubes // Ferroelectrics. 2023. V. 604. № 1. P. 14–21. https://doi.org/10.1080/00150193.2023.2168975
Дополнительные файлы
