REDOX NANOSTRUCTURING OF BIPOROUS NICKEL (II) SINTERED USING A SPACE HOLDER
- Авторлар: Gnedovets A.G.1, Zelenskii V.A.1, Shustov V.S.1, Alymov M.I.1
-
Мекемелер:
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
- Шығарылым: Том 511, № 1 (2023)
- Беттер: 47-53
- Бөлім: CHEMICAL TECHNOLOGY
- URL: https://ter-arkhiv.ru/2686-9535/article/view/651966
- DOI: https://doi.org/10.31857/S2686953522600568
- EDN: https://elibrary.ru/YRJDEB
- ID: 651966
Дәйексөз келтіру
Аннотация
Permeable metallic nickel and ceramic nickel-oxide materials with nanostructured surface and multilevel hierarchical porosity were created by cyclic redox post-treatment of biporous nickel (II) consolidated in the sintering-dissolution process. Additional levels of intraparticle porosity – Kirkendall pores and shrinkage nanopores – were formed during the stages of high-temperature oxidation in air and reduction in hydrogen, respectively.
Негізгі сөздер
Авторлар туралы
A. Gnedovets
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: agg@imet.ac.ru
Russian, 119334, Moscow
V. Zelenskii
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Email: agg@imet.ac.ru
Russian, 119334, Moscow
V. Shustov
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Email: agg@imet.ac.ru
Russian, 119334, Moscow
M. Alymov
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Email: agg@imet.ac.ru
Russian, 119334, Moscow
Әдебиет тізімі
- Kirillov V.A., Fedorova Z.A., Danilova M.M., Zaikov-skii V.I., Kuzin N.A., Kuzmin V.A., Krieger T.A., Mescheryakov V.D. // Appl. Catal. A: General. 2011. V. 401. P. 170–175. https://doi.org/10.1016/j.apcata.2011.05.018
- Singh H., Saxena P., Puri Y.M. // CIRP J. Manuf. Sci. Technol. 2021. V. 33. P. 339–368. https://doi.org/10.1016/j.cirpj.2021.03.014
- Trogadas P., Ramani V., Strasser P., Fuller T.F., Coppens M.O. // Angew. Chem. Int. Ed. 2016. V. 55. P. 122–148. https://doi.org/10.1002/anie.201506394
- Alnarabiji M.S., Tantawi O., Ramli A., Zabidi N.A.M., Ghanem O.B., Abdullah B. // Renew. Sust. Energy Rev. 2019. V. 114. 109326. https://doi.org/10.1016/j.rser.2019.109326
- Schwieger W., Machoke A.G., Weissenberger T., Inayat A., Selvam T., Klumpp M., Inayat A. // Chem. Soc. Rev. 2016. V. 45. P. 3353–3376. https://doi.org/10.1039/C5CS00599J
- Stanev L., Kolev M., Drenchev B., Drenchev L. // J. Manuf. Sci. Eng. 2017. V. 139. P. 050802. https://doi.org/10.1115/1.4034440
- Гнедовец А.Г., Зеленский В.А., Анкудинов А.Б., Алымов М.И. // ДАН. 2019. Т. 484. № 4. С. 436–440. https://doi.org/10.31857/S0869-56524844436-440
- Gnedovets A.G., Zelensky V.A., Ankudinov A.B., Shus-tov V.S., Alymov M.I. // J. Phys.: Conf. Ser. 2021. V. 1942. P. 012019. https://doi.org/10.1088/1742-6596/1942/1/012019
- Atwater M.A. // Met. Powder Rep. 2019. V. 74. P. 251–254. https://doi.org/10.1016/j.mprp.2019.01.004
- Faes A., Hessler-Wyser A., Zryd A., Van herle J. // Membranes. 2012. V. 2. P. 585–664. https://doi.org/10.3390/membranes2030585
- Nakamura R., Lee J.G., Mori H., Nakajima H. // Philos. Mag. 2008. V. 88. P. 257–264. https://doi.org/10.1080/14786430701819203
- Xiang W., Dong Z., Luo Y., Zhao J., Wang J.O., Ibrahim K., Zhan H., Yue W., Guo H. // Materials. 2019. V. 12. P. 805. https://doi.org/10.3390/ma12050805
- Wang Z., Yan Y., Chen Y., Han W., Liu M., Zhang Y., Xiong Y., Chen K., Lv Z., Liu M. // J. Mater. Chem. A. 2017. V. 5. P. 20709–20719. https://doi.org/10.1039/C7TA04293K
- Chen C., Wang S., Peng Z., Ao G. // J. Mater. Sci.: Mater. Electron. 2019. V. 30. P. 11231–11238. https://doi.org/10.1007/s10854-019-01468-w
- Kharchenko Y., Blikharskyy Z., Vira V., Vasyliv B., Podhurska V. // Appl. Nanosci. 2020. V. 10. P. 4535–4543. https://doi.org/10.1007/s13204-020-01391-1
- Kenel C., Geisendorfer N.R., Shah R.N., Dunand D.C. // Addit. Manuf. 2021. V. 37. 101637. https://doi.org/10.1016/j.addma.2020.101637
- Jae W., Song J., Hong J.J., Kim J. // J. Alloys Compd. 2019. V. 805. P. 957–966. https://doi.org/10.1016/j.jallcom.2019.07.192
- Zhu P., Wu Z., Zhao Y. // Scripta Mater. 2019. V. 172. P. 119–124. https://doi.org/10.1016/j.scriptamat.2019.07.019
- Xing F., Ta N., Zhong J., Zhong Y., Zhang L. // Solid State Ionics. 2019. V. 341. P. 115018. https://doi.org/10.1016/j.ssi.2019.115018
- Weinberg K., Böhme T., Müller W.H. // Comput. Mater. Sci. 2009. V. 45. P. 827–831. https://doi.org/10.1016/j.commatsci.2008.09.028
- Choi I.D., Matlock D.K., Olson D.L. // Mater. Sci. Eng., A. 1990. V. 124. P. L15–L18. https://doi.org/10.1016/0921-5093(90)90161-U
Қосымша файлдар
