The Influence of Ultralow Content of Graphene on Wear-Resistant Properties of Composites Based on Ultra-High Molecular Weight Polyethylene

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The composite samples with the graphene filler content of 0.014 to 0.05 wt % have been prepared via the in situ polymerization. The effect of the ultralow content of graphene on the set of wear-resistant and tribological properties of the synthesized composited based on ultra-high molecular weight polyethylene has been studied. Weas resistance of the synthesized materials under conditions of high-speed impact of a water-sand suspension, wear during microcutting and friction wear resistance have been investigated. Furthermore, the friction coefficient on steel has been determined. The introduction of graphene into the ultra-high molecular weight polyethylene has improved the resistance to abrasion during microcutting and has increased the wear resistance under the action of the water-sand suspension (the free abrasive wear).

About the authors

A. S. Zabolotnov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: zabolotnov.ru@gmail.com
119991, Moscow, Russia

S. S. Gostev

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: zabolotnov.ru@gmail.com
119991, Moscow, Russia

M. V. Gudkov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: zabolotnov.ru@gmail.com
119991, Moscow, Russia

L. A. Novokshonova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: zabolotnov.ru@gmail.com
119991, Moscow, Russia

R. I. Chelmodeev

Bauman Moscow State Technical University

Author for correspondence.
Email: zabolotnov.ru@gmail.com
105005, Moscow, Russia

References

  1. Андреева И.Н., Веселовская Е.В., Наливайко Е.И. Сверхвысокомолекулярный полиэтилен высокой плотности. Л.: Химия, 1982.
  2. Галицын В.П. Дис. … д-ра хим. наук. М.: ВНИИСВ, 2012.
  3. Май Ю., Жонг-Жен Ю. Полимерные нанокомпозиты. М.: Техносфера, 2011.
  4. Zhen J., Han Y., Zhu L. // Tribol. Int. 2023. V 179. P. 108097.
  5. Hussain M., Naqvi R.A., Naseem Abbas N. // Polymers. 2020. V. 323. № 12(2). P. 1.
  6. Sharma S., Bijwe J., Panier S. // Wear. 2015. V. P. 332.
  7. Aliyu I.K., Azam M.U., Lawal D.U. // Arab. J. Sci. Eng. 2019. № 45. P. 849.
  8. Plumlee K., Schwartz C.J. // Wear. 2009. V. 267. P. 710.
  9. Rodrigues M.M., Fontoura C.P., Maddalozzo A.E. // Composites. 2020. № 189. P. 1.
  10. Panin S.V., Kornienko L.A., Nguen T. // J. Friction Wear. 2014. V. 35. № 4. P. 444.
  11. Pettarin V., Churruca M.G., Felhos D. // Wear. 2010. V. 269. P. 31.
  12. Zhen J., Han Y., Zhu. L. // Tribol. Int. 2023. V. 179. P. 108097.
  13. Guezmil M., Bensalah W., Mezlini. S. // Mater. Res. Express. 2019. V. 6. № 7. P. 1.
  14. Gogoleva O.V., Petrova P.N., Popov S.N. // J. Friction Wear. 2015. V. 36. № 4. P. 301.
  15. Tong J., Ma Y., Arnell R.D., Ren L. // Composites A. 2006. V. 37. P. 38.
  16. Новокшонова Л.А., Мешкова И.Н. // Высокомолек. cоед. 1994. Т. 36. № 4. С. 629.
  17. Yusrina M.D., Tan W.S. // Proc. Adv. Mater., Eng. Technol. 2020. V. 2291. P. 020029-1.
  18. Chang B.P., Akil H.M., Nasir R.B. // Tribol. Int. 2015. V. 88. P. 252.
  19. Chang B.P., Akil H.M., MD Nasir R.B. // Sains Malaysiana. 2015. V. 44. № 6. P. 819.
  20. Aderikha V. N., Shapovalov V. A., Krasnov A.P. // Composites. 2008. V. 29. № 4. P. 318.
  21. Panin S.V., Buslovich D.G., Dontsov Y.V. // Materials. 2021. V. 14. № 1515. P. 1.
  22. Wang Y., Yin Z. // Ind. Lubr. Tribol. 2019. V. 71. P. 22.
  23. Panin S.V., Kornienko L.A., Ivanova L.R. // J. Friction Wear. 2014. V. 35. № 4. P. 290.
  24. Wood W.J., Maguire R.G., Zhong W.H. // Composites B. 2011. V. 42. P. 584.
  25. Panin S.V., Kornienko L.A., Alexenko V.O. // Materials. 2020. V. 13. P. 338.
  26. Samad M.A., Sinha S.K. // Tribol. Int. 2011. V. 44. P. 1932.
  27. Diabb J.M., Leija Guti’errez H.M., C’ardenas E.S. // J. Mech. Behav. Biomed. Maters. 2021. V. 120. P. 104554.
  28. Yingfei An, Tai Z., Yingfei Y.Q. // J. Appl. Polym. Sci. 2014. № 39640. P. 1.
  29. Pang W., Jialiang W.P., Zhang W.Q. // RSC Adv. 2017. V. 7. P. 55536.
  30. Chen X., Zhang S., Zhang L. // Polymers. 2021. V. 13. P. 482.
  31. Фарберова И.И., Ратнер С.Б., Лурье Е.Г. // Пласт. массы. 1962. № 9. С. 35.
  32. Tai Z., Chen Y., An Y. // Tribol Lett. 2012. V. 46. P. 55.
  33. Brevnov P.N., Kirsankina G.R., Zabolotnov A.S., Krasheninnikov V.G., Grinev V.G., Berezkina N.G., Sinevich E.A., Shcherbina M.A., Novokshonova L.A. // Polymer Science C. 2016. V. 58. № 1. P. 38.
  34. Park H.-J., Kwak S.-Y., Kwak S. // Macromol. Chem. Phys. 2005. V. 206. P. 945.
  35. Nazarov V.G., Stolyarov V.P., Doronin F.A., Evdokimov A.G., Rytikov G.O., Brevnov P.N., Zabolotnov A.S., Novokshonova L.A., Berlin A.A. // Polymer Science A. 2019. V. 61. № 3. P. 325.
  36. Ryvkina N.G., Nezhnyi P.A., Kudinova O.I. // Russ. J. Phys. Chem. B. 2019. V. 13. № 5. P. 831.
  37. Shiyanova K.A, Gudkov M.V., Gorenberg A.Y. // ACS Omega. 2020. № 5. V. 39. P. 25148.
  38. Pei S., Cheng H.M. // Carbon. 2012. V. 50. № 9. P. 3210.
  39. Brevnov P.N., Zabolotnov A.S., Krasheninnikov V.G. // Kinet. Catal. 2016. V. 57. № 4. P. 482.
  40. Teplov A.A., Tribological S.I., Belousov E.A. // Crystallogr. Rep. 2021. V. 66. № 6. P. 883.
  41. Kovaříková I., Szewczyková B., Blaškovitš P. // Mater. Sci. Technol. 2009. V. 1. P. 1.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (24KB)
3.

Download (24KB)
4.

Download (44KB)

Copyright (c) 2023 А.С. Заболотнов, С.С. Гостев, М.В. Гудков, Л.А. Новокшонова, Р.И. Челмодеев