Composite Solid Electrolytes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review describes composite electrolytes based on classical salt matrix phases, and also shows the possibilities of creating composites using simple or complex oxide matrices, where simple substances, salts, simple and complex oxides are used as heterogeneous dopant. The magnitude of the composite effect of electrical conductivity is discussed from the point of view of various theories of its quantitative description. The reasons for the occurrence of the composite effect are summarized. The effect of increasing ionic conductivity is due to the disorder of the surface layer in the intergranular space, amorphization or spreading of the matrix phase or the phase of heterogeneous dopant over the surface of the other phase due to the difference in surface energy, as well as the possibility of joint manifestation of these effects when using complex oxide eutectic composites with treatment above the temperature of the eutectic system.

Full Text

Restricted Access

About the authors

E. S. Matveev

Ural Federal University named after the first President of Russia B.N. Yeltsin

Author for correspondence.
Email: Egor.Matveev@urfu.ru
Russian Federation, Ekaterinburg

References

  1. Yaroslavtsev A.B. // Russ. Chem. Rev. 2016. V. 85. № 11. P. 1255. https://doi.org/10.1070/RCR4634
  2. Liang C.C. // J. Electrochem. Soc. 1973. V. 120. № 10. P. 1289. https://doi.org/10.1149/1.2403248
  3. Jain S.L., Lakeman J.B., Pointon K.D. et al. // J. Fuel Cell Sci. Technol. 2006. V. 4. № 3. P. 280. https://doi.org/10.1115/1.2743073
  4. Zhu B. // Int. J. Energy. Res. 2006. V. 30. № 11. P. 895. https://doi.org/https://doi.org/10.1002/er.1195
  5. Hui R., Wang Z., Yick S. et al. // J. Power Sources. 2007. V. 172. № 2. P. 840. https://doi.org/https://doi.org/10.1016/j.jpowsour.2007.05.036
  6. Belousov V.V, Fedorov S.V. // Russ. Chem. Rev. 2012. V. 81. № 1. P. 44. https://doi.org/10.1070/RC2012v081n01ABEH004209
  7. Belousov V.V, Schelkunov V.A., Fedorov S.V et al. // Electrochem. Commun. 2012. V. 20. P. 60. https://doi.org/https://doi.org/10.1016/j.elecom.2012.04.001
  8. Lee S., Kim M., Hwang M. et al. // Exp. Therm. Fluid. Sci. 2013. V. 49. P. 94. https://doi.org/10.1016/j.expthermflusci.2013.04.006
  9. Kul’Bakin I.V., Fedorov S.V., Vorob’ev A.V. et al. // Russ. J. Electrochem. 2013. V. 49. № 9. P. 982. https://doi.org/10.1134/S1023193513090085
  10. Lyskov N.V, Metlin Yu.G., Belousov V.V et al. // Solid State Ion. 2004. V. 166. № 1. P. 207. https://doi.org/https://doi.org/10.1016/j.ssi.2003.10.008
  11. Belousov V.V. // J. Mater. Sci. 2005. V. 40. № 9. P. 2361. https://doi.org/10.1007/s10853-005-1959-y
  12. Fedorov S.V, Belousov V.V, Vorobiev A.V. // J. Electrochem. Soc. 2008. V. 155. № 12. P. F241. https://doi.org/10.1149/1.2990701
  13. Belousov V.V, Fedorov S.V, Vorobiev A.V. // J. Electrochem. Soc. 2011. V. 158. № 6. P. B601. https://doi.org/10.1149/1.3561425
  14. Kul’bakin I.V, Fedorov S. V, Vorob’ev A. V et al. // Russ. J. Electrochem. 2013. V. 49. № 9. P. 878. https://doi.org/10.1134/S1023193513090085
  15. Yu Q., Jiang K., Yu C. et al. // Chin. Chem. Lett. 2021. V. 32. № 9. P. 2659. https://doi.org/10.1016/j.cclet.2021.03.032
  16. Yao P., Yu H., Ding Z. et al. // Front. Chem. 2019. V. 7. https://doi.org/10.3389/fchem.2019.00522
  17. Yaroslavtsev A.B., Karavanova Yu.A., Safronova E. Yu. // Pet. Chem. 2011. V. 51. № 7. P. 473. https://doi.org/10.1134/S0965544111070140
  18. Golubenko D.V., Shaydullin R.R., Yaroslavtsev A.B. // Colloid Polym. Sci. 2019. V. 297. № 5. P. 741. https://doi.org/10.1007/s00396-019-04499-1
  19. Yaroslavtsev A.B. // Russ. J. Inorg. Chem. 2000. V. 45. № 3.
  20. Yaroslavtsev A.B. // Russ. Chem. Rev. 2016. V. 85. № 11. P. 1255. https://doi.org/10.1070/RCR4634
  21. Maier J. // Prog. Solid State Chem. 1995. V. 23. № 3. P. 171. https://doi.org/10.1016/0079-6786(95)00004-E
  22. Mateyshina Y., Alekseev D., Uvarov N. // Mater. Today Proc. 2019: pp. 373–376 https://doi.org/10.1016/j.matpr.2019.12.094
  23. Alekseev D.V., Mateyshina Y.G., Uvarov N.F. // Russ. J. Electrochem. 2021. V. 57. № 10. P. 1037. https://doi.org/10.1134/S1023193521100037
  24. Alekseev D.V., Mateyshina Y.G., Komarov V.Y. et al. // Mater. Today Proc. 2020. V. 31. №3. P. 576. https://doi.org/10.1016/j.matpr.2020.06.522
  25. Matsui T., Kukino T., Kikuchi R. et al. // Electrochim. Acta. 2006. V. 51. № 18. P. 3719. https://doi.org/10.1016/j.electacta.2005.10.026
  26. Muroyama H., Matsui T., Kikuchi R. et al. // J. Phys. Chem. C. 2008. V. 112. № 39. P. 15532. https://doi.org/10.1021/jp8043362
  27. Ponomareva V.G., Shutova E.S., Lavrova G.V. // Inorg. Mater. 2008. V. 44. № 9. P. 1009. https://doi.org/10.1134/S0020168508090185
  28. Muroyama H., Akagi T., Matsui T. et al. // Solid State Ion. 2012. V. 225. P. 663. https://doi.org/10.1016/j.ssi.2012.03.037
  29. Kikuchi R., Ogawa A., Matsuoka T. et al. // Solid State Ion. 2016. V. 285. P. 160. https://doi.org/10.1016/j.ssi.2015.10.008
  30. Loginov A.V., Bagavieva S.K., Aparnev A.I. et al. // Russ. J. Appl. Chem. 2017. V. 90. № 3. P. 496. https://doi.org/10.1134/S1070427217030259
  31. Ulikhin A.S., Novozhilov D.V, Khusnutdinov V.R. et al. // Russ. J. Electrochem. 2022. V. 58. № 7. P. 580. https://doi.org/10.1134/S102319352207014X
  32. Kosheleva E.V, Pentin M.A., Kalinina L.A. et al. // Russ. J. Electrochem. 2017. V. 53. № 7. P. 790. https://doi.org/10.1134/S1023193517070059
  33. Pentin M.A., Ananchenko B.A., Kalinina L.A. et al. // Russ. J. Electrochem. 2019. V. 55. № 8. P. 785. https://doi.org/10.1134/S1023193519080111
  34. Pentin M.A., Kalinina L.A., Kosheleva E.V et al. // Russ. J. Electrochem. 2021. V. 57. № 8. P. 840. https://doi.org/10.1134/S1023193521070107
  35. Ushakova Yu.N., Kalinina L.A., Fominykh E.G. et al. // Russ. J. Electrochem. 2005. V. 41. № 6. P. 625. https://doi.org/10.1007/s11175-005-0115-y
  36. Ulihin A.S., Uvarov N.F., Mateyshina Y.G. et al. // Solid State Ion. 2006. V. 177. № 26-32. P. 2787. https://doi.org/10.1016/j.ssi.2006.03.018
  37. Saito M., Nozaki Y., Tokuno H. et al. // Solid State Ion. 2009. V. 180. № 6–8. P. 575. https://doi.org/10.1016/j.ssi.2008.09.009
  38. Li Z. // Electrochim. Acta. 2010. V. 55. № 24. P. 7298. https://doi.org/10.1016/j.electacta.2010.07.006
  39. Mateyshina Y., Slobodyuk A., Kavun V. et al. // Solid State Ion. 2018. V. 324. P. 196. https://doi.org/10.1016/j.ssi.2018.04.026
  40. Rabadanov K.S., Gafurov M.M., Kubataev Z.Y. et al. // Russ. J. Electrochem. 2019. V. 55. № 6. P. 573. https://doi.org/10.1134/s0424857019060173
  41. Luo Y., Gao H., Zhao X. // Ceram. Int. 2022. V. 48. № 6. P. 8387. https://doi.org/10.1016/j.ceramint.2021.12.045
  42. Kubataev Z.Yu., Gafurov M.M., Rabadanov K.Sh. et al. // Electrochem. Mater. and Technol. 2024. V. 3. № 1. P. 20243030. https://doi.org/10.15826/elmattech.2024.3.030
  43. Ponomareva V.G., Lavrova G.V. // Solid State Ion. 2001. V. 145. № 1–4. P. 197. https://doi.org/10.1016/S0167-2738(01)00957-2
  44. Ponomareva V., Shutova E. // Solid State Ion. 2007. V. 178. № 7–10. P. 729. https://doi.org/10.1016/j.ssi.2007.02.035
  45. Aparnev A.I., Loginov A.V., Uvarov N.F. et al. // Appl. Sci. 2023. V. 13. № 8. P. 5038. https://doi.org/10.3390/app13085038
  46. Lavrova G.V, Shutova E.S., Ponomareva V.G. et al. // Russ. J. Electrochem. 2013. V. 49. № 7. P. 718. https://doi.org/10.1134/S1023193513070094
  47. Mateyshina Y.G., Alekseev D. V, Khusnutdinov V.R. et al. // Mater. Today Proc. V. 12. № 1. P. 13. https://doi.org/10.1016/j.matpr.2019.02.206
  48. Alekseev D., Khusnutdinov V., Mateyshina Y. // MATEC Web of Conferences. 2021. V. 340. P. 01038. https://doi.org/10.1051/matecconf/202134001038
  49. Stenina I.A., Kulova T.L., Skundin A.M. et al. // Mater. Res. Bull. 2016. V. 75. P. 178. https://doi.org/10.1016/j.materresbull.2015.11.050
  50. Kozlova A., Uvarov N., Ulihin A. // Mater. 2022. V. 15. № 17. https://doi.org/10.3390/ma15176079
  51. Спесивцева В.С. // Международный научный Журн. Альтернативная энергетика и экология. 2011. № 6. P. 21.
  52. Alyabysheva I.V, Kochetova N.A., Matveev E.S. et al. // Bull. Russ. Acad. Sci.: Phys. 2017. V. 81. № 3. P. 384. https://doi.org/10.3103/S1062873817030030
  53. Kochetova N., Alyabysheva I., Animitsa I. // Solid State Ion. 2017. V. 306. P. 118. https://doi.org/https://doi.org/10.1016/j.ssi.2017.03.021
  54. Alyabysheva I.V, Kochetova N.A., Matveev E.S. et al. // Russ. J. Electrochem. 2019. V. 55. № 8. P. 778. https://doi.org/10.1134/S1023193519080032
  55. Kochetova N.A., Alyabysheva I.V., Matveev E.S. et al. // J. of Siberian Federal University. Chem. 2023. V. 16. № 3. P. 383.
  56. Porotnikova N., Khrustov A., Farlenkov A. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 4. P. 6180. https://doi.org/10.1021/acsami.1c20839
  57. Koteneva E.A., Pestereva N.N., Animitsa I.E. et al. // Russ. J. Electrochem. 2017. V. 53. № 7. P. 739. https://doi.org/10.1134/S1023193517070060
  58. Guseva A.F., Pestereva N.N., Otcheskikh D.D. et al. // Russ. J. Electrochem. 2019. V. 55. № 6. P. 544. https://doi.org/10.1134/S1023193519060090
  59. Pestereva N.N., Guseva A.F., Kuznetsov D.K. et al. // Russ. J. Phys. Chem. A. 2020. V. 94. № 12. P. 2482. https://doi.org/10.1134/S0036024420120213
  60. Guseva A.F., Pestereva N.N., Vostrotina E.L. и др. // Russ. J. Electrochem. 2020. V. 56. № 5. P. 447. https://doi.org/10.31857/s0424857020050035
  61. Guseva, Pestereva N., Otcheskikh D. et al. // Solid State Ion. 2021. V. 364. https://doi.org/10.1016/j.ssi.2021.115626
  62. Pestereva N.N., Guseva A.F., Dahle Y.A. // Russ. J. Electrochem. 2021. V. 57. № 8. P. 817. https://doi.org/10.1134/S1023193521080097
  63. Guseva A.F., Pestereva N.N., Pyrlik E.V. et al. // Inorg. Mater. 2022. V. 58. № 6. P. 612. https://doi.org/10.1134/S0020168522060036
  64. Гусева А.Ф., Пестерева Н.Н. // Журн. Неорг. Хим. 2023. Т. 68. № 3. С. 426. https://doi.org/10.31857/S0044457X2260164X
  65. Pestereva N.N., Guseva A.F., Belyatova V.A. et al. // Russ. J. Electrochem. 2023. V. 59. № 8. P. 573. https://doi.org/10.1134/S1023193523080062
  66. Guseva A.F., Pestereva N.N., Kuznetsov D.K. et al. // Russ. J. Electrochem. 2023. V. 59. № 4. P. 284. https://doi.org/10.1134/S1023193523040079
  67. Guseva A., Pestereva N., Uvarov N. // Solid State Ion. 2023. V. 394. https://doi.org/10.1016/j.ssi.2023.116196
  68. Kovalenko A.N., Tugova E.A. // Nanosyst. Phys. Chem. Math. 2018. P. 641. https://doi.org/10.17586/2220-8054-2018-9-5-641-662
  69. Neiman A.Ya., Pestereva N.N., Sharafutdinov A.R. et al. // Russ. J. Electrochem. 2005. V. 41. № 6. P. 598. https://doi.org/10.1007/s11175-005-0112-1
  70. Partin G.S., Pestereva N.N., Korona D.V. et al. // Russ. J. Electrochem. 2015. V. 51. № 10. P. 945. https://doi.org/10.1134/S1023193515100109
  71. Loginov A. V, Bagavieva S.K., Aparnev A.I. et al. // Russю J. Applied Chemistry 2017. V. 90. № 3. P. 496. https://doi.org/10.1134/S1070427217030259
  72. Loginov A. V, Mateyshina Yu.G., Aparnev A.I. et al. // Russian J. Appl. Chem. 2018. V. 91. № 10. P. 1660. https://doi.org/10.1134/S1070427218100130
  73. Loginov A. V, Aparnev A.I., Uvarov N.F. // Inorg. Mater. 2022. V. 58. № 4. P. 420. https://doi.org/10.1134/S0020168522040094
  74. Loginov A. V., Aparnev A.I., Uvarov N.F. // Inorg. Mater. 2022. V. 58. № 8. P. 814. https://doi.org/10.1134/S0020168522080088
  75. Uvarov N.F. // Russ. J. Electrochem. 2017. V. 53. № 7. P. 700. https://doi.org/10.1134/S1023193517070151
  76. Rey J.F.Q., Ferreira F.F., Muccillo E.N.S. // Solid State Ion. 2008. V. 179. № 21–26. P. 1029. https://doi.org/10.1016/j.ssi.2007.12.007
  77. Ponomareva V.G., Bagryantseva I.N. // Phys. Solid State. 2017. V. 59. № 9. P. 1829. https://doi.org/10.1134/S1063783417090244
  78. Jow T., Wagner J.B. // J. Electrochem. Soc. 1979. V. 126. № 11. P. 1963. https://doi.org/10.1149/1.2128835/META
  79. Maier J. // J. Phys. Chem. Solids. 1985. V. 46. № 3. P. 309 https://doi.org/10.1016/0022-3697(85)90172-6
  80. Maier J. // PCCP. 1984. V. 88. № 11. P. 1057. https://doi.org/10.1002/BBPC.198400007
  81. Maier J. // Mater. Res. Bull. 1985. V. 20. № 4. P. 383. https://doi.org/10.1016/0025-5408(85)90005-4
  82. Maier J., Reichert B. // PCCP. 1986. V. 90. № 8. P. 66. https://doi.org/10.1002/BBPC.19860900809
  83. Jow T., Wagner J.B. // J. Electrochem. Soc. 1979. V. 126. № 11. P. 1963. https://doi.org/10.1149/1.2128835/META
  84. Nan C., Smith D. // Mater. Sci. Eng., B. 1991. V. 10. № 2. P. 99. https://doi.org/10.1016/0921-5107(91)90115-C
  85. Jiang S., Wagner J. // J. Phys. Chem. Solids. 1995. V. 56. № 8. P. 1113. https://doi.org/10.1016/0022-3697(95)00026-7
  86. McLachlan D.S., Blaszkiewicz M., Newnham R.E. // J. Am. Ceram. Soc. 1990. V. 73. № 8. P. 2187. https://doi.org/10.1111/j.1151-2916.1990.tb07576.x
  87. Kirkpatrick S. // Rev. Mod. Phys. 1973. V. 45. № 4. P. 574. https://doi.org/10.1103/RevModPhys.45.574
  88. Шкловский Б.И. // Успехи физических наук. 1975. Т. 117. № 11. С. 401.
  89. Нетушил А.В. // Электричество. 1975. № 10. С. 1.
  90. Bánhegyi G. // Colloid. Polym. Sci. 1986. V. 264. № 12. P. 1030. https://doi.org/10.1007/BF01410321
  91. Newnham R.E. // Ferroelectr. 1986. V. 68. № 1. P. 1. https://doi.org/10.1080/00150198608238734
  92. Nan C.W. // Prog. Mater. Sci. 1993. V. 37. № 1. P. 1. https://doi.org/10.1016/0079-6425(93)90004-5
  93. Roman H.E., Bunde A., Dieterich W. // Phys. Rev. B. 1986. V. 34. № 5. P. 3439. https://doi.org/10.1103/PhysRevB.34.3439
  94. Dieterich W., Dürr O., Pendzig P. et al. // Phys. A: Stat. Mech. Appl. 1999. V. 266. № 1–4. P. 229. https://doi.org/10.1016/S0378-4371(98)00597-4
  95. Bunde A. // Solid State Ion. 1995. V. 75. P. 147. https://doi.org/10.1016/0167-2738(94)00146-J
  96. Uvarov N.F. // Dokl. Phys. Chem. 1997. V. 353. № 1. P. 116.
  97. Uvarov N.F. // Solid State Ion. 2000. V. 136–137. P. 1267. https://doi.org/10.1016/S0167-2738(00)00585-3
  98. Uvarov N.F. // Solid State Ion. 2017. V. 302. P. 19. https://doi.org/10.1016/j.ssi.2016.11.021

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Concentration dependence of relative electrical conductivity of samples in the system (1–x)A·xSND (A = AgI, LiClO4) [22-24]. The graph was made by the author of the review based on the data of publications [22–24]

Download (318KB)
3. Fig. 2. Concentration dependences of relative electrical conductivity of composites in systems based on CsH2PO4 [27] and LiTi2(PO4)3/LiClO4 [31] salts. The graph is made by the author of the review based on the data of publications [27, 31]

Download (294KB)
4. Fig. 3. Concentration dependences of relative electrical conductivity of samples in composite systems based on MLn2S4 (M = Ba, Ca; Ln = Y, Sm, Yb) [32–34]. The graph was made by the author of the review based on the data of publications [32–34]

Download (223KB)
5. Fig. 4. Concentration dependences of relative electrical conductivity for samples in the systems CsH2PO4 – SrZrO3 [46], CsNO2 – MgAl2O4 [47] and LiClO4 – MgAl2O4 [48]. The graph was made by the author of the review based on the data of the publication [46–48]

Download (417KB)
6. Fig. 5. Concentration dependences of the total electrical conductivity of samples in the Ba2In2O5–Ba2InTaO6 system [53] obtained in air atmosphere with different humidity. The graph was made by the author of the review based on the data of the publication [53]

Download (238KB)
7. Fig. 6. Concentration dependence of the relative bulk electrical conductivity of samples in the La2Mo2O9–La2Mo3O12 system [56]. The graph was made by the author of the review based on the data of the publication [56]

Download (289KB)
8. Fig. 7. Scheme of microstructural features of composites in systems with spreading of salt phase on another phase

Download (507KB)
9. Fig. 8. Scheme of microstructural features of composites in systems with the formation of a new highly conductive phase different in composition from the initial phases

Download (419KB)
10. Fig. 9. Scheme of microstructural features of composites in systems with the formation of crystalline disordered phases during crystallisation of eutectics with submicron-sized grains

Download (504KB)

Copyright (c) 2024 Russian Academy of Sciences