Electron Microscopic Analysis of the Nb5Si3/NBC/NbSi2 Composite Structure

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The method of aluminothermic self-propagating high-temperature synthesis was used to obtain a composite material based on Nb-Si-C. The study of this system is of interest from the point of view of obtaining high-temperature materials of a new generation for gas turbine engine building, capable of replacing heat-resistant nickel alloys, as well as the potential possibility of forming MAX-phases (phases Mn + 1AXn where n = 1, 2, 3, ...; M is transitional d-metal, A – p-element, X – carbon). The resulting Nb-Si-C composite were studied by X-ray diffraction, scanning electron microscopy, and X-ray spectral microanalysis. It is shown that NbC carbide and silicides γ-Nb5Si3 and NbSi2 are formed in the sample. A detailed analysis of the morphological distribution of the constituent phases has been carried out.

全文:

受限制的访问

作者简介

R. Nikonova

Scientific Center for Metallurgical Physics and Materials Science, Udmurt Federal Research Center of the UB of the RAS

编辑信件的主要联系方式.
Email: rozam@udman.ru
俄罗斯联邦, Izhevsk

N. Larionova

Scientific Center for Metallurgical Physics and Materials Science, Udmurt Federal Research Center of the UB of the RAS

Email: rozam@udman.ru
俄罗斯联邦, Izhevsk

V. Ladyanov

Scientific Center for Metallurgical Physics and Materials Science, Udmurt Federal Research Center of the UB of the RAS

Email: rozam@udman.ru
俄罗斯联邦, Izhevsk

参考

  1. Geng J. // Development of niobium silicide based in situ composites. Next generation materials for high temperature applications. LAP LAMBERT Academic Publishing, 2012. 308 p.
  2. Bewlay B.P., Jackson M.R., Zhao J.-C., Subramanian P.R. // Metal. Mater. Trans. A. 2003. V. 34A. P. 2043. https://www.doi.org/10.1007/s11661-003-0269-8
  3. Карпов М.И. // Металловедение и термическая обработка. 2018. T. 751. № 1. C. 9.
  4. Светлов И.Л. // Материаловедение. 2010. № 9–10. С. 18.
  5. Карпов М.И., Внуков В.И., Строганова Т.С., Прохоров Д.В., Желтякова И.С., Гнесин Б.А., Кийко В.М., Светлов И.Л. // Известия РАН. Серия Физическая. 2019. Т. 83. № 10. С. 1353. https://www.doi.org/10.1134/S0367676519100156
  6. Garip Y. // Arch. Metall. Mater. 2020. V. 65 № 2. P. 917. https://www.doi.org/10.24425/amm.2020.132839
  7. Савицкий Е.М., Ефимов Ю.В., Бодак О.И., Харченко О.И., Мясников Е.А. // Неорганические материалы. 1981. Т. 17. № 12. С. 2207.
  8. Кузьмина Н.А., Марченко Е.И., Еремин Н.Н., Якушев Д.А. // Труды ВИАМ. 2018. T. 61. № 1. C. 15. https://www.doi.org/10.18577/2307-6046-2018-0-1-2-2
  9. Fujikura M., Kasama A., Tanaka R., Hanada S. // Mater. Trans. 2004. V. 45. № 2. P. 493. https://doi.org/10.2320/matertrans.45.493
  10. Yu Q.S., Fang H.Y., Wang K.Y. // Sci. China Series E: Technol. Sci. 2009. V. 52. № 1. P. 37. https://doi.org/10.1007/s11431-008-0297-0
  11. Fei D., Lina J., Sainan Y., Linfen S., Junfei W., Hu Z. // Chinese J. Aeronautics. 2014. V. 27. № 2. P. 438. https://doi.org/10.1016/j.cja.2013.07.032
  12. Zhang S., Guo X. // Intermetallics. 2016. V. 70. P. 33. https://doi.org/10.1016/j.intermet.2015.12.002
  13. Liu W., Sha J.B. // Mater. Design. 2016. V. 111. P. 301. http://dx.doi.org/10.1016/j.matdes.2016.08.087
  14. Shkoda O.A., Lapshin O.V. // Int. J. Self-Propagating High-Temperature Synthesis. 2020. V. 29. № 2. P. 96. https://www.doi.org/10.3103/S1061386220020144
  15. Wang Y., Liu Q., Zhang L., Cheng L. // J. Coat. Technol. Res. 2009. V. 6. № 3. P. 413. https://www.doi.org/10.1007/s11998-008-9129-1
  16. Nedfors N., Tengstrand O., Flink A., Eklund P., Hultman L., Jansson U. // Thin Solid Films. 2013. V. 545. P. 272. http://dx.doi.org/10.1016/j.tsf.2013.08.066
  17. Li H., Nong Z., Xu Q., Song Q., Chen Y., Man T., Hao Ch. // IOP Conf. Series: Earth and Environmental Science. 032008. 2021. V. 714. https://www.doi.org/10.1088/1755-1315/714/3/032008
  18. Barsoum M.W. // Prog. Solid State Chem. 2000. V. 28. P. 201. https://www.doi.org/10.1016/S0079-6786(00)00006-6
  19. Андриевский Р.А. // Успехи физических наук. 2017. Т. 187. № 3. С. 296. https://doi.org/10.3367/UFNr.2016.09.037972
  20. Shiquan F., Feng G., Feng M., Zheng W., Chaosheng Y., Cheng X., Kun Y. // Chem. Phys. 111321. 2021. V. 551. https://www.doi.org/10.1016/ j.chemphys.2021.111321
  21. Ghebouli B., Ghebouli M.A., Fatmi M., Louail L., Chihi T., Bouhemadou A. // Trans. Nonferrous Met. Soc. China. 2015. V. 25. P. 915. https://www.doi.org/10.1016/S1003-6326(15)63680-9
  22. Grechnev A., Li S., Ahuja R. // Appl. Phys. Lett. 2004. V. 85. № 15. P. 3071. https://doi.org/10.1063/1.1791734
  23. Материалообразующие высокоэкзотермические процессы: металлотермия и горение систем термитного типа / Ред. Алымов М.И. М.: РАН, 2021. 376 c.
  24. Nikonova R.M., Larionova N.S., Lad ′yanov V.I., Pushkarev B.E., Panteleyeva A.V. Structure and phase composition of Nb-Si-C-based composites prepared by SHS method. // XV International Symposium on Self-Propagating High-Temperature Synthesis, September 16-20, 2019, Moscow, Russia: Chernogolovka IPCP RAS 2019. P. 301. eISBN 978-5-6040595-4-8
  25. Перевислов С.Н., Семенова В.В., Лысенков А.С. // Журнал неорганической химии. 2021. T. 66. № 8. С. 987. https://doi.org/10.31857/S0044457X21080213
  26. Shelekhov E.V., Sviridova T.A. // Metal Science and Heat Treatment. 2000. V. 42. P. 309. https://doi.org/10.1007/BF02471306
  27. Nowotny H., Boiler H., Zwilling G. Carbides and silicides. // Proc. of the 5th Materials Research Symposium sponsored by the Institute for Materials Research, National Bureau of Standards, October 18–21, 1971, Gaithersburg, Maryland. P. 783.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Diffractogram from Nb-Si-C sample and bar diagrams corresponding to phases NbSi2, NbC, Nb5Si3

下载 (256KB)
3. Fig. 2. Image of the sample fracture surface obtained by scanning electron microscopy

下载 (2MB)
4. Fig. 3. Distribution maps of Nb, Si, C on a separate section of the sample fracture surface

下载 (1MB)

版权所有 © Russian Academy of Sciences, 2024