Properties and Prospects for Application of Lithium Liquid Glass in Thermal Control Coatings of Spacecraft

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A comparative study of the radiation resistance of the optical properties of binders for spacecraft thermostatic housings was carried out: widely sold liquid glass K2SiO3 and newly developed liquid glass Li2SiO3. At the analisis of diffuse reflection spectra (ρλ) in the wavelenght range 0.2–2.5 μm and the integral radiation absorption coefficient (аs) both before and after electron radiation, an incomparably higher radiation resistance of Li2SiO3 liquid glass compared to K2SiO3 glass was established. The values of the change in the absorption coefficient ∆аs of liquid glass Li2SiO3 comparing to one of K2SiO3 liquid glass are several times less: for electron radiation with an estimate of 30 keV at a fluence Ф = 2 × 1016 cm–2 – 35 times; at Ф = 4 × 1016 cm–2 – 25 times; at Ф = 6 × 1016 cm–2 – 7 times. Analysis of of the factors that determine the radiation resistance of these glasses was made. The advantage in the radiation resistance of Li2SiO3 liquid glass is making it prospective for use as connecting compounds in thermal control coatings of spacecraft, in paints, ceramics and other areas of technology and industry with the presence of ionizing traces.

Sobre autores

M. Mikhailov

Tomsk State University of Control Systems & Radioelectronics

Autor responsável pela correspondência
Email: membrana2010@mail.ru
Russia, 634000, Tomsk

A. Lapin

Tomsk State University of Control Systems & Radioelectronics

Autor responsável pela correspondência
Email: alexey.lapin@tusur.ru
Russia, 634000, Tomsk

S. Yuryev

Tomsk State University of Control Systems & Radioelectronics

Email: alexey.lapin@tusur.ru
Russia, 634000, Tomsk

V. Goronchko

Tomsk State University of Control Systems & Radioelectronics

Email: alexey.lapin@tusur.ru
Russia, 634000, Tomsk

Bibliografia

  1. Михайлов М.М. Спектры отражения терморегулирующих покрытий космических аппаратов. Том 1. Томск: Изд-во Томского университета, 2007. 314 с.
  2. Thermal Control Coatings. Nonmetallic Materials. JSC “Kompozit”. Cited 16 September 2022. https://kompozit-mv.ru/index.php/nemetallicheskie-materialy/lakokrasochnye-termoreguliruyushchie-pokrytiya.html
  3. Токарь С.В., Баринова О.П. // Техника и технология силикатов. 2019. Т. 26. № 1. С. 6.
  4. Kositsyn L.G., Mikhailov M.M., Kuznetsov N.Y., Dvoretskii M.I. // Instrum. Experimental Tech. 1985. V. 28. P. 929.
  5. Burns D.A., Ciurczak E.W. Handbook of Near-Infrared Analysis. Dekker: N.Y., 2001. 814 p.
  6. Blanco M., Coello J., Iturriaga H., Maspoch S., Pezuela C. // Analyst. 1998. V. 123. P. 135. https://www.doi.org/10.1039/A802531B
  7. Brauer G., Anwand W., Grambole D., Grenzer J., Skorupa W., Čížek J., Kuriplach J., Procházka I., Ling C.C., So C.K., Schulz D., Klimm D. // Phys. Rev. B. 2009. V. 79. P. 115212. https://www.doi.org/10.1103/PhysRevB.79.115212
  8. Davydov A. Molecular Spectroscopy of Oxide Catalyst Surfaces. Chichester: John Wiley & Sons Ltd, 2003. 641 p.
  9. Boccuzzi F., Morterra C., Scala R., Zecchina A. // J. Chem. Soc. Faraday Trans. II. 1981. V. 77. P. 2059. https://www.doi.org/10.1039/F29817702059
  10. Keyes B.M., Gedvilas L.M., Li X., Coutts T.J. // J. Crystal Growth. 2005. V. 281. P. 297. https://www.doi.org/10.1016/j.jcrysgro.2005.04.053
  11. Noei H., Qiu H., Wang Y., Löffler E., Wöll C., Muhler M. // Phys. Chem. Chem. Phys. 2008. V. 10. P. 7092. https://www.doi.org/10.1039/b811029h
  12. Cooper C.D., Mustard J.F. // Icarus. 1999. V. 142. Iss. 2. P. 557. https://www.doi.org/10.1006/icar.1999.6221
  13. Окабе Х. Фотохимия малых молекул. М.: Мир, 1981. 504 с.
  14. Shardakov N.T. // Glass Phys. Chem. 2021. V. 47. № 6. P. 548. https://www.doi.org/10.1134/S1087659621060250
  15. Johnson F.S. // J. Meteorological. 1954. V. 11. № 6. P. 431.
  16. ASTM E490-00a Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables, 2005.
  17. ASTM E903-96 Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres, 2005.
  18. Патент 2 160 294 (РФ). Дата подачи заявки: 10.07.1998г. Модификатор для светоотражающих покрытий на основе диоксида циркония / Томский политехнический университет. Владимиров В.М., Михайлов М.М. // Опубликован 10.12.2000 г.
  19. Нещименко В.В. Исследование структуры, свойств и радиационной стойкости оксидных порошков, модифицированных наночастицами. Дис. … д-ра физико-математических наук: 01.04.07. Томск: ТУСУР. 2017. 273 с.
  20. Hong R., Pan T., Qian J., Li H. // Chem. Engineering J. 2006. V. 119. P. 71. https://www.doi.org/10.1016/j.cej.2006.03.003
  21. Макарова Е.А., Харитонов А.В. Распределение энергии Солнца и солнечная постоянная. М.: Наука, 1972. 88 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (71KB)
3.

Baixar (73KB)
4.

Baixar (62KB)
5.

Baixar (62KB)
6.

Baixar (71KB)
7.

Baixar (70KB)

Declaração de direitos autorais © М.М. Михайлов, А.Н. Лапин, С.А. Юрьев, В.А. Горончко, 2023