On optimal conditions for generation of terahertz surface plasmon-polaritons by the end-fire coupling technique

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The results of an experimental study of the generation of surface plasmon-polaritons in the terahertz range are presented. The end-fire coupling technique has been used for generation, when the beam is focused on the metal–dielectric interface. It has been found that at normal beam incidence, the efficiency of plasmon-polaritons generation is maximum, and the half-width of the dependence of the generation efficiency on the angle of radiation incidence in the sample plane is 6.0° ± 0.5°. It is shown that the generation efficiency has a maximum at a certain shift of the center of the incident beam relative to the metal–dielectric interface. The half-width of this maximum is 590 ± 50 μm, which is consistent with theory within the error limits.

Full Text

Restricted Access

About the authors

P. А. Nikitin

Scientific and Technological Centre of Unique Instrumentation RAS

Author for correspondence.
Email: nikitin.pavel.a@gmail.com
Russian Federation, Moscow

V. V. Gerasimov

Novosibirsk State University; Budker Institute of Nuclear Physics SB RAS

Email: v.v.gerasimov3@gmail.com
Russian Federation, Novosibirsk; Novosibirsk

A. G. Lemzyakov

Budker Institute of Nuclear Physics SB RAS; Shared Research Center “Siberian Ring Photon Source”, Boreskov Institute of Catalysis SB RAS

Email: nikitin.pavel.a@gmail.com
Russian Federation, Novosibirsk; Novosibirsk

References

  1. Maier S.A. Plasmonics: Fundamentals and Applications. New York: Springer, 2007. 224 p. https://doi.org/10.1007/0-387-37825-1
  2. Liang Y., Koshelev K., Zhang F., Lin H., Lin S., Wu J., Jia B., Kivshar Y. // Nano Lett. 2020. V. 20. № 9. P. 6351. https://doi.org/10.1021/acs.nanolett.0c01752
  3. Peale R.E., Figueiredo P.N., Phelps J.R., Chan K.C., Abdolvand R., Smith E.M., Vangala S. // Infrared Phys. Tech. 2022. V. 125. P. 104253. https://doi.org/10.1016/j.infrared.2022.104253
  4. Gallerano G.P., Biedron S. // Proc. of the 2004 FEL Conf. 2004. P. 216. https://accelconf.web.cern.ch/f04/papers/FRBIS02/FRBIS02.PDF
  5. Lewis R.A. // J. Phys. D. 2019. V. 52. № 43. P. 433001. https://doi.org/10.1088/1361-6463/ab31d5
  6. Zhang X., Xu Q., Xia L., Li Y., Gu J., Tian Z., Ouyang C., Han J., Zhang W. // Adv. Photon. 2020. V. 2. № 1. P. 014001. https://doi.org/10.1117/1.AP.2.1.014001
  7. Begley D.L., Alexander R.W., Ward C.A., Miller R., Bell R.J. // Surf. Sci. 1979. V. 81. № 2. P. 245. https://doi.org/10.1016/0039-6028(79)90515-6
  8. Suarez I., Ferrando A., Marques-Hueso J., Diez A., Abargues R., Rodriguez-Canto P., Martinez-Pastor J. // Nanophotonics. 2017. V. 6. № 5. P. 1109. https://doi.org/10.1515/nanoph-2016-0166
  9. Koteles E.S., McNeill W.H. // Int. J. Infrared Millim. Waves. 1981. V. 2. P. 361. https://doi.org/10.1007/BF01007040
  10. Steijn K.W., Seymour R.J., Stegeman G.I. // Appl. Phys. Lett. 1986. V. 49. P. 1151. https://doi.org/10.1063/1.97450
  11. Huang W., Yang W., Yin Sh., Zhang W. // Results Phys. 2021. V. 31. P. 104985. https://doi.org/10.1016/j.rinp.2021.104985
  12. Korobko D.A., Zolotovskii I.O., Moiseev S.G., Kadochkin A.S., Svetukhin V.V. // J. Opt. 2021. V. 24. № 1. P. 015002. https://doi.org/10.1088/2040-8986/ac3c4f
  13. Ebadi S.M., Ortegren J. // OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF). 2020. P. NoTh3C.5. https://doi.org/10.1364/NOMA.2020.NoTh3C.5
  14. Sun W., He Q., Sun S., Zhou L. // Light Sci. Appl. 2016. V. 5. P. e16003. https://doi.org/10.1038/lsa.2016.3
  15. Mackay T.G., Faryad M. // Plasmonics. 2022. V. 17. P. 753. https://doi.org/10.1007/s11468-021-01568-6
  16. Vinogradov A.P., Dorofeenko A.V., Pukhov A.A., Lisyansky A.A. // Phys. Rev. B. 2018. V. 97. № 23. P. 235407. https://doi.org/10.1103/PhysRevB.97.235407
  17. Martl M., Darmo J., Unterrainer K., Gornik E. // J. Opt. Soc. Am. B. 2009 V. 26. № 3. P. 554. https://doi.org/10.1364/JOSAB.26.000554
  18. Farhat M., Guenneau S., Bagci H. // Phys. Rev. Lett. 2013. V. 111. № 23. P. 237404. https://doi.org/10.1103/PhysRevLett.111.237404
  19. Stegeman G.I., Wallis R.F., Maradudin A.A. // Opt. Lett. 1983. V. 8. № 7. P. 386. https://doi.org/10.1364/OL.8.000386
  20. Gerasimov V.V., Nikitin A.K., Lemzyakov A.G., Azarov I.A. // Photonics. 2023. V. 10. № 8. P. 917. https://doi.org/10.3390/photonics10080917
  21. Gerasimov V.V., Nikitin A.K., Lemzyakov A.G., Azarov I.A. Kotelnikov I.A. // Appl. Sci. 2023. V. 13. № 13. P. 7898. https://doi.org/10.3390/app13137898
  22. Gerasimov V.V., Knyazev B.A., Lemzyakov A.G., Nikitin A.K., Zhizhin G.N. // J. Opt. Soc. Am. B. 2016. V. 33. № 11. P. 2196. https://doi.org/10.1364/JOSAB.33.002196
  23. Kukotenko V.D., Gerasimov V.V. // Proc. SPIE. 2023. V. 12776. Р. 1277607. https://doi.org/10.1117/12.2687472
  24. Handbook of Optical Constants of Solids. Vol. 1. / Ed. Palik E.D. Cambridge, MA, USA: Academic Press, 2016. 824 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of generation of plasmon-polaritons by the edge diffraction method: a – side view; b – top view.

Download (14KB)
3. Fig. 2. Theoretical dependence of the efficiency of generation of plasmon-polaritons in the THz range on the position of the central part of the incident radiation beam.

Download (11KB)
4. Fig. 3. Schematic diagram of the experimental setup: 1 — THz radiation beam; 2 — flat mirror; 3 — cylindrical mirror; 4 — sample; 5 — screen; 6 — radiation receiver.

Download (7KB)
5. Fig. 4. Experimental dependence of the efficiency of generation of plasmon-polaritons in the THz range on the position of the central part of the incident radiation beam.

Download (14KB)
6. Fig. 5. Experimental dependence of the efficiency of generation of plasmon-polaritons in the THz range on the angle of incidence of the radiation beam.

Download (14KB)

Copyright (c) 2025 Russian Academy of Sciences