Modeling of the process of hot isostatic pressing of single crystals of nickel-based superalloy, taking into account plastic flow and vacancy diffusion

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A complex model of pore annihilation during hot isostatic pressing (HIP), which takes into account the simultaneous action of the mechanisms of material plastic flow and diffusive pore dissolution due to the emission of vacancies by the pore surface, has been proposed. The obtained mathematical equations are applied to analyze the kinetics of pore annihilation in single crystals of the nickel-based superalloy CMSX-4 during HIP used for this alloy in industry. It follows from the analysis that both mechanisms (plastic flow and vacancy diffusion) make comparable contributions to the reduction of pore volume under these conditions. As the HIP pressure increases, the contribution of plastic flow increases, while the contribution of vacancy diffusion decreases. Large pores shrink in volume mainly due to the mechanism of plastic flow, however, at the final stage of pore closure, the mechanism of vacancy diffusion is more active. To ensure reliable pore healing by the vacancy mechanism, HIP should be carried out at a moderate argon pressure in the HIP plant.

Texto integral

Acesso é fechado

Sobre autores

А. Epishin

Merzhanov Institute of Structural Macrokinetics and Materials Science of the RAS

Email: a.epishin2021@gmail.com
Rússia, Chernogolovka

D. Lisovenko

Ishlinsky Institute for Problems in Mechanics of the RAS

Autor responsável pela correspondência
Email: lisovenk@ipmnet.ru
Rússia, Moscow

Bibliografia

  1. Shalin R.E., Svetlov I.L., Kachanov E.B., Toloraia V.N., Gavrilin O.S. Single crystals of nickel-based superalloys. Moscow: Mashonostroeniye. 1997. 333 p. [in Russian].
  2. Reed R.C. The Superalloys: Fundamentals and applications. Cambridge: Cambridge University Press, 2006. 372 p. https://doi.org/10.1017/CBO9780511541285
  3. Epishin A., Link T., Bruckner U., Portella P.D. Investigation of porosity in single-crystal nickel-base superalloys // Proc. the 7th Liege Conference on Materials for Advanced Power Engineering. FZ Jülich, 2002. P. 217–226.
  4. Link T., Zabler S., Epishin A. et.al. Synchrotron tomography of porosity in single-crystal nickel-base superalloys // Mat. Sci. Eng. A. 2006. V. 425. P. 47–54. https://doi.org/10.1016/j.msea.2006.03.005
  5. Epishin A., Link T., Svetlov I.L. et.al. Mechanism of porosity growth during homogenisation in single crystal nickel-based superalloys // Int. J. Mater. Res. 2013. V. 104. P. 776–782. https://doi.org/10.3139/146.110924
  6. Lecomte-Beckers J. Study of microporosity formation in nickel-base superalloys // Metall. Trans. A. 1988. V. 19. № 9. P. 2341–2348. https://doi.org/10.1007/BF02645058
  7. Anton D.L., Giamei A.F. Porosity distribution and growth during homogenization in single crystals of a Nickel-base superalloy // Mater. Sci. Eng. 1985. V. 76. P. 173–180. https://doi.org/10.1016/0025-5416(85)90091-6
  8. Toloraya V.N., Zuev A.G., Svetlov I.L. Effect of conditions of directed solidification and heat treatment on porosity in creep resistant nickel alloy single crystals // Izv. Akad. Nauk SSSR. Metally. 1991. № 5. P. 70–76.
  9. Fullagar K.P.L., Broomfield R.W., Hulands M. et al. Aero engine test experience with CMSX-4® alloy single-crystal turbine blades // J. Eng. Gas Turbines Power. 1996. V. 118. P. 380–388. https://doi.org/10.1115/1.2816600
  10. Epishin A.I., Link T., Fedelich B. et al. Hot isostatic pressing of single-crystal Ni-base superalloys: mechanism of pore closure and effect on mechanical properties // MATEC Web of Conferences. 2014. V. 14. P. 08003. https://doi.org/10.1051/matecconf/20141408003
  11. Reed R.C., Cox D.C., Rae C.M.F. Damage accumulation during creep deformation of a single crystal superalloy at 1150 °C // Mater. Sci. Eng. A. 2007. V. 448. № 1–2. P. 88–96. https://doi.org/10.1016/j.msea.2006.11.101
  12. Epishin A., Fedelich B., Link T. et al. Pore annihilation in a single-crystal nickel-base superalloy during hot isostatic pressing: Experiment and modelling // Mat. Sci. Eng. A. 2013. V. 586. P. 342–349. https://doi.org/10.1016/j.msea.2013.08.034
  13. Epishin A.I., Bokstein B.S., Svetlov I.L. et al. A vacancy model of pore annihilation during hot isostatic pressing of single crystals of nickel-base superalloys // Inorg. Mater. Appl. Res. 2018. V. 9. P. 57–65. https://doi.org/10.1134/S2075113318010100
  14. Epishin A.I., Lisovenko D.S., Alymov M.I. A model of diffusion annihilation of gas-filled spherical pores during hot isostatic pressing // Mech. Solids. 2025. V. 60. № 1. P. 136–157. http://doi.org/10.1134/S0025654424604981
  15. Čadek J. The back stress concept in power law creep of metals: A review // Mater. Sci. Eng. 1987. V. 94. P. 79–92. https://doi.org/10.1016/0025-5416(87)90324-7
  16. Epishin A., Fedelich B., Nolze G. et al. Creep of single crystals of nickel-based superalloys at ultra-high homologous temperature // Metall. Mater. Trans. A. 2018. V. 49. P. 3973–3987. https://doi.org/10.1007/s11661-018-4729-6
  17. Epishin A.I., Fedelich B., Viguier B. et al. Creep of single-crystals of nickel-base γ-alloy at temperatures between 1150 °C and 1288 °C // Mater. Sci. Eng. A. 2021. V. 825. P. 141880. https://doi.org/10.1016/j.msea.2021.141880
  18. Epishin A., Camin B., Hansen L. et. al. Refinement and experimental validation of a vacancy model of pore annihilation in single-crystal nickel-base superalloys during hot isostatic pressing // Adv. Eng. Mater. 2020. V. 23. № 7. P. 2100211. https://doi.org/10.2139/ssrn.3751560
  19. Klingelhöffer H., Epishin A., Link T. Low cycle fatigue of the single-crystal nickel-base superalloy CMSX-4 - Anistropy and effect of creep damage // Mater. Testing. 2009. V. 51. № 5. P. 291–294. https://doi.org/10.3139/120.110035
  20. Epishin A.I., Alymov M.I. Deformation and fracture of single crystals of nickel-base superalloys CMSX-4 and CMSX-10 under conditions of creep and fatigue loading // Russian Metallurgy (Metally). 2023. V. 2023. № 4. P. 460–465. https://doi.org/10.1134/S0036029523040079
  21. Epishin A.I., Nolze G., Alymov M.I. Pore morphology in single crystals of a nickel-based superalloy after hot isostatic pressing // Metall. Mater. Trans. A. 2023. V. 54. P. 371–379. https://doi.org/10.1007/s11661-022-06893-x
  22. Orlov M.A. Technological maintenance of the service life of the working blades of the first turbine stages of aircraft and ground-based gas turbine engines. Diss. for the degree of Doctor of Technical Sciences. Moscow, 2008. 207 p.
  23. Epishin A., Link T., Portella P.D., Brückner U. Evolution of the γ/γ′ microstructure during high-temperature creep of a nickel-base superalloy // Acta Mater. 2000. V. 48. № 16. P. 4169–4177. https://doi.org/10.1016/S1359-6454(00)00197-X
  24. Wilkinson D.S, Ashby M.F Pressure sintering by power law creep // Acta Metallurgica. 1975. V. 23. № 11. P. 1277–1285. https://doi.org/10.1016/0001-6160(75)90136-4

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Model for describing the kinetics of pore annihilation during HIP – thick-walled isotropic sphere with a central pore under the action of external HIP pressure pe and pore surface tension gM.

Baixar (213KB)
3. Fig. 2. Dots – dependence of the minimum creep rate of CMSX-4 alloy single crystals of different crystallographic orientations on the applied stress [16]. Solid and dashed lines – approximation of dots for orientation [001], respectively, with sB ≠ 0 and sB = 0. Dash-dotted line – assumed dependence for low-symmetry orientations [011] and [123].

Baixar (188KB)
4. Fig. 3. Finding the optimal value of the degree n by maximizing the determination coefficient r 2 = f (n).

Baixar (168KB)
5. Fig. 4. Kinetics of pore diameter reduction assuming different HIP mechanisms. Plastic flow (P), vacancy diffusion (D) and P+D together under external pressure pe are respectively the blue, green and dashed red curves. The solid red curve is plastic flow with diffusion under the total pressure Sp = pe + pL (Laplace pressure).

Baixar (229KB)
6. Fig. 5. Kinetics of HIP under conditions of the combined action of plastic flow mechanisms with diffusion under the total pressure Sp = pe + pL. (a) Change in the total and partial pore compression rates. (b) Total change in pore volume (in %) and contributions to it from plastic deformation and diffusion.

Baixar (206KB)
7. Fig. 6. Dependence of the annihilation time of pores of different initial diameters Dp,0 on the HIP pressure.

Baixar (377KB)
8. Fig. 7. Contributions (in %) of plastic deformation mechanisms (solid curves) and diffusion (dashed curves) to the volume compression of pores of different initial diameters Dp,0 at different HIP pressures.

Baixar (478KB)
9. Fig. 8. Experimental facts indicating the pore annihilation mechanisms operating in nickel-based heat-resistant alloys during HIP. (a, b) CMSX-4 alloy after 0.5 h HIP at a temperature of 1288 °C and a pressure of 103 MPa. (a) – Slip bands near the pore surface. TEM [12]. (b) – γ′-phase shell around the pore and faceting of its surface. SEM [21]. (c) – Formation of a ring-shaped raft structure of the γ′-phase around a pore in the ZhS6U-VI alloy during HIP at a temperature of 1210 °C (below the γ′-solvus) and a pressure of 150 MPa. SEM [22].

Baixar (293KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025