Comparative Analysis of Asphalt Forming Processes Based on Finely Dispersed Expanded Clay Powders

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The features of the structure formation of an asphalt binder modified with a highly dispersed expanded clay powder are investigated. The viscosity of the modified asphalt binder and the formation of an adsorption layer of bitumen on the surface of the particles of the mineral component at various degrees of filling in the temperature range of 100–180oC have been studied. The effect of the impact of expanded clay powder on the adsorption activity of bitumen, the adhesive strength of bitumen with a mineral filler and on the adhesion of an asphalt binder with a mineral filler is analyzed. It was revealed that the interaction of bitumen with highly dispersed expanded clay powder significantly increases the viscosity of the asphalt binder and increases the thickness of the bitumen film on the surface of mineral particles at all process temperatures compared with standard limestone mineral powder, which is determined by the processes of selective diffusion of low-molecular hydrocarbons into the particles of expanded clay powder occurring when combined with the binder. Modification of the asphalt binder with expanded clay powder significantly increases its adsorption activity and adhesion of bitumen to mineral aggregate and adhesive strength at the interface of the «filler–bitumen» phases. This is due not only to physical interaction, but also to the presence of an increased number of active surface adsorption centers of Lewis and Brensted on the surface of expanded clay particles, which indicates the formation of chemical bonds.

全文:

受限制的访问

作者简介

S. Kazaryan

North Caucasus Federal University

编辑信件的主要联系方式.
Email: sam23otr@mail.ru

Senior Lecturer 

俄罗斯联邦, Stavropol

Yu. Borisenko

North Caucasus Federal University

Email: borisenko2005@yandex.ru

Candidate of Sciences

俄罗斯联邦, Stavropol

M. Yagubov

North Caucasus Federal University

Email: As-mark@mail.ru

Graduate Student 

俄罗斯联邦, Stavropol

K. Shuhaib

North Caucasus Federal University

Email: karrarfaeez89@mail.com

Graduate Student 

俄罗斯联邦, Stavropol

参考

  1. Korotaev A.P. Improving the quality of asphalt concrete by using porous mineral powder. Cand. Diss. (Engineering). Belgorod. 2009. 169 p. (In Russian).
  2. Vysotskaya M.A., Kuznetsov D.K., Barabash D.E. Peculiarities of structure formation of bitumen-mineral compositions with the use of porous raw materials. Stroitel’nye Materialy [Construction Materials]. 2014. No. 1–2, pp. 68–71. (In Russian).
  3. Yadykina V.V. Upravlenie protsessami formirovaniya i kachestvom stroitel’nykh kompozitov s uchetom sostoyaniya poverkhnosti dispersnogo syr’ya [Control of the processes of formation and quality of construction composites taking into account the state of the surface of dispersed raw materials]. Moscow: ASV. 2009. 374 p.
  4. Boskholov K.A. Asphalt concrete using activated silica-containing mineral powders. Cand. Diss. (Engineering). Ulan-Ude. 2007. 114 p. (In Russian).
  5. Fan Li, Xiang Zhao, Xiao Zhang. Utilizing original and activated coal gangue wastes as alternative mineral fillers in asphalt binder: Perspectives of rheological properties and asphalt-filler interaction ability. Construction and Building Materials. 2023. Vol. 365. 130069. DOI: https://doi.org/10.1016/j.conbuildmat.2022.130069.
  6. Kürşat Yıldız, Mert Atakan. Improving microwave healing characteristic of asphalt concrete by using fly ash as a filler. Construction and Building Materials. 2020. Vol. 262. 120448/ DOI: https://doi.org/10.1016/j.conbuildmat.2020.120448.
  7. Ning Liu, Liping Liu, Mingchen Li, Lijun Sun. Effects of zeolite on rheological properties of asphalt materials and asphalt-filler interaction ability. Construction and Building Materials. 2023. Vol. 382. 131300. https://doi.org/10.1016/j.conbuildmat.2023.131300
  8. Clara E., Barra B.S., Teixeira L.H., Mikowski A., Hughes G.B., Nguyen M.-L. Influence of polymeric molecular chain structure on the rheological-mechanical behavior of asphalt binders and porous asphalt mixes. Construction and Building Materials. 2023. Vol. 369. 130575. DOI: https://doi.org/10.1016/j.conbuildmat.2023.130575
  9. Yinzhang He, Jiupeng Zhang, Bo Gao, Ling Wang, Yan Li, Fucheng Guo, Guojing Huang. Experimental investigation of the interface interaction between asphalt binder and mineral filler from the aspects of materials properties. Construction and Building Materials. 2023. Vol. 393. 132094. DOI: https://doi.org/10.1016/j.conbuildmat.2023.132094
  10. Kazaryan S.O. Stabilizing additives for crushed stone-mastic asphalt concrete based on highly dispersed porous mineral materials. Vestnik of the Volgograd State University of Architecture and Civil Engineering. Series: Construction and architecture. 2020. Iss. 1 (78), pp. 149–156. (In Russian).
  11. Borisenko Yu.G., Kazaryan S.O., Selimov M.A., Borisenko O.A. Physicochemical bases for the use of porous mineral powders in bitumomineral compositions. Dorogi i mosty. 2016. Iss. 35, pp. 263–281. (In Russian).
  12. Inozemtsev S.S., Pozdnyakov M.K., Korolev E.V. Investigation of the adsorption-solvate layer of bitumen on the surface of mineral powder. Vestnik MGSU. 2012. Iss. 11, pp. 159–167. (In Russian).
  13. Patent RF 2686340. Sposob otsenki stsepleniya bituma s mineral’nym materialom [Method for evaluation of bitumen adhesion with mineral material]. Ivkin A.S., Vasil’ev V.V., Salamatova E.V., Maidanova N.V., Kondrasheva N.K. Declared 06.08.2018. Published 25.04.2019. (In Russian).
  14. Borisenko Y.G., Kazaryan S.O. Features of the stress strain of ceramsite powder modified SMA pavements. Russian Journal of Building Construction and Architecture. 2019. Vol. 3 (55), pp. 36–43. (In Russian). doi: 10.25987/VSTU.2019.55.3.004
  15. Churaev N.V. Khimiya protsessov massoperenosa v poristykh telakh [Chemistry of mass transfer processes in porous bodies]. Moscow: Khimiya. 1990. 272 p.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependence of dispersion system viscosity on filling at Т=130оС: 1 – ECP; 2 – MP1

下载 (69KB)
3. Fig. 2. Dependence of bitumen shell thickness on temperature: 1 – ECP: α=αо; 2 – MP1: α=αо; 3 – ECP: α=α; 4 – MP1: α=α

下载 (81KB)
4. Fig. 3. IR spectra interaction of bitumen with filler: 1 – pure bitumen of BND 60/90 grade; 2 – after interaction with limestone; 3 – after interaction with expanded clay powder

下载 (91KB)
5. Fig. 4. Adsorption-desorption of bitumen from toluene solution on the surface of mineral powders: 1 – MP1 desorption; 2 – ECP desorption; 3 – MP1 adsorption; 4 – ECP adsorption

下载 (84KB)

版权所有 © ООО РИФ "СТРОЙМАТЕРИАЛЫ", 2024

##common.cookie##