Рекомбинация носителей заряда в аморфных органических полупроводниках
- Авторы: Новиков С.А.1,2
-
Учреждения:
- Институт физической химии и электрохимии им. А.Н. Фрумкина РАН
- Национальный исследовательский университет “Высшая школа экономики”
- Выпуск: Том 60, № 11 (2024): Спецвыпуск “Электрохимия-2023”, часть 2
- Страницы: 783-792
- Раздел: Статьи участников Всероссийской конференции “Электрохимия-2023” (Москва, 23–26 октября 2023 года)
- URL: https://ter-arkhiv.ru/0424-8570/article/view/682802
- DOI: https://doi.org/10.31857/S0424857024110049
- EDN: https://elibrary.ru/NPOBJZ
- ID: 682802
Цитировать
Аннотация
Рассмотрена бимолекулярная рекомбинация носителей заряда в аморфных органических полупроводниках. Общей особенностью этих материалов является пространственная корреляция случайного энергетического ландшафта, в котором осуществляется прыжковый транспорт носителей заряда. Проведен расчет константы скорости рекомбинации, в том числе для случая локально упорядоченных материалов. Оказывается, что именно пространственная корреляция является причиной нарушения соотношения Ланжевена между подвижностями носителей заряда и константой скорости рекомбинации. Для разных источников энергетического беспорядка истинная константа скорости может быть как меньше, так и больше соответствующего ланжевеновского значения. Указаны перспективные классы органических полупроводников, константа скорости рекомбинации в которых может превышать ланжевеновское значение, что ведет к потенциальному увеличению эффективности генерации света в органических светодиодах. Органические полупроводники с малой величиной константы рекомбинации перспективны для использования в солнечных элементах. Рассмотрены особенности двумерной бимолекулярной рекомбинации в материалах на основе олиго- и политиофенов, в которых формируются двумерные ламеллы. Формальная константа скорости рекомбинации становится зависящей от концентрации носителей заряда, а учет пространственно-коррелированного энергетического беспорядка ведет к реализации разнообразных зависимостей константы скорости от концентрации носителей. Анализ вольт-амперных характеристик органических устройств позволяет сделать выбор между двумерной и трехмерной рекомбинацией.
Полный текст

Об авторах
С. А. Новиков
Институт физической химии и электрохимии им. А.Н. Фрумкина РАН; Национальный исследовательский университет “Высшая школа экономики”
Автор, ответственный за переписку.
Email: novikov@elchem.ac.ru
Россия, Москва; Москва
Список литературы
- Shinar, J. and Shinar, R., Organic light-emitting devices (oleds) and oled-based chemical and biological sensors: an overview, J. Physics D, 2008, vol. 41, no. 13, p. 133001.
- Kim, J.J., Han, M.K., and Noh, Y.Y., Flexible oleds and organic electronics, Semicond. Sci. Technol., 2011, vol. 26, no. 3, p. 030301.
- Günes, S., Neugebauer, H., and Sariciftci, N.S., Conjugated polymer-based organic solar cells, Chem. Rev., 2007, vol. 107, no. 4, p. 1324.
- Shim, Y.B. and Park, J.H., Humidity sensor using chemically synthesized poly (1, 5-diaminonaphthalene) doped with carbon, J. Electrochem. Soc., 2000, vol. 147, no. 1, p. 381.
- Heremans, P., Gelinck, G.H., Muller, R., Baeg, K.J., Kim, D.U., and Noh, Y.Y., Polymer and organic nonvolatile memory devices, Chem. Mater., 2011, vol. 23, no. 3, p. 341.
- Organic electrochemistry, Hammerich, O., Speiser, B., Eds, Boca Raton: CRC press, 2016. 1736 p.
- Solid state electrochemistry I: fundamentals, materials and their applications, Kharton, V.V., Ed., Boca Raton: John Wiley-VCH, 2009. 527 p.
- Bouwmeester, H. and Gellings, P., Handbook of solid state electrochemistry, Boca Raton: CRC press, 1997. 704 p.
- Pivrikas A., Juška, G., Österbacka, R., Westerling, M., Viliunas, M., Arlauskas, K., and Stubb, H., Langevin recombination and space-charge-perturbed current transients in regiorandom poly(3-hexylthiophene), Phys. Rev. B, 2005, vol. 71, no. 12, p. 125205.
- Kuik, M., Wetzelaer, G.A.H., Laddé, J.G., Nicolai, H.T., Wildeman, J., Sweelssen, J., and Blom, P.W.M., The effect of ketone defects on the charge transport and charge recombination in polyfluorenes, Adv. Funct. Mater., 2011, vol. 21, no. 23, p. 4502.
- Kuik, M., Nicolai, H.T., Lenes, M., Wetzelaer, G.A.H., Lu, M., and Blom, P.W.M., Determination of the trap-assisted recombination strength in polymer light emitting diodes, Appl. Phys. Lett., 2011, vol. 98, no. 9, p. 093301.
- Wetzelaer, G.A.H., Kuik, M., Nicolai, H.T., and Blom, P.W.M., Trap-assisted and langevin-type recombination in organic light-emitting diodes, Phys. Rev. B, 2011, vol. 83, no. 16, p. 165204.
- Lakhwani, G., Rao, A., and Friend, R.H., Bimolecular recombination in organic photovoltaics, Annu. Rev. Phys. Chem., 2014, vol. 65, no. 1, p. 557.
- Proctor, C.M., Kuik, M., and Nguyen, T.Q., Charge carrier recombination in organic solar cells, Prog. Polym. Sci., 2013, vol. 38, no. 12, p. 1941.
- Kniepert, J., Lange, I., van der Kaap, N.J., Koster, L.J.A., and Neher, D., A conclusive view on charge generation, recombination, and extraction in as-prepared and annealed p3ht: pcbm blends: Combined experimental and simulation work, Adv. Energy Mater., 2013, vol. 4, no. 7, p. 1301401.
- Deibel, C., Wagenpfahl, A., and Dyakonov, V., Origin of reduced polaron recombination in organic semiconductor devices, Phys. Rev. B, 2009, vol. 80, no. 7, p. 075203.
- Bässler, H., Charge transport in disordered organic photoconductors. A Monte Carlo study, Phys. Status Solidi B, 1993, vol. 175, no. 1, p. 15.
- Novikov, S.V. and Vannikov, A.V., Cluster structure in the distribution of the electrostatic potential in a lattice of randomly oriented dipoles, J. Phys. Chem., 1995, vol. 99, no. 40, p. 14573.
- Dunlap, D.H., Parris, P.E., and Kenkre, V.M., Charge-dipole model for the universal field dependence of mobilities in molecularly doped polymers, Phys. Rev. Lett., 1996, vol. 77, no. 3, p. 542.
- Novikov, S.V. and Vannikov, A.V., Hopping charge transport in disordered organic materials: Where is the disorder? J. Phys. Chem. C, 2009, vol. 113, no. 6, p. 2532.
- Novikov, S.V., Dunlap, D.H., Kenkre, V.M., Parris, P.E., and Vannikov, A.V., Essential role of correlations in governing charge transport in disordered organic materials, Phys. Rev. Lett., 1998, vol. 81, no. 20, p. 4472.
- Novikov, S.V., Charge-carrier transport in disordered polymers, J. Polym. Sci. B, 2003, vol. 41, no. 21, p. 2584.
- Novikov, S.V., Dunlap, D.H., and Kenkre, V.M., Charge-carrier transport in disordered organic materials: dipoles, quadrupoles, traps, and all that, SPIE Proceedings, 1998, vol. 3471, p. 181.
- Novikov, S.V. and Malliaras, G.G., Energetic disorder at the metal-organic semiconductor interface, Phys. Rev. B, 2006, vol. 73, no. 3, p. 033308.
- Tutis, E., Batistic, I., and Berner, D., Injection and strong current channeling in organic disordered media, Phys. Rev. B, 2004, vol. 70, no. 16, p. 161202.
- Rice, S.A., Diffusion-Limited Reactions, Amsterdam: Elsevier, 1985. 404 p.
- Novikov, S.V., Bimolecular recombination of charge carriers in polar amorphous organic semiconductors: Effect of spatial correlation of the random energy landscape, J. Phys. Chem. C, 2018, vol. 122, no. 40, p. 22856.
- Massé, A., Friederich, P., Symalla, F., Liu, F., Meded, V., Coehoorn, R., Wenzel, W., and Bobbert, P.A., Effects of energy correlations and superexchange on charge transport and exciton formation in amorphous molecular semiconductors: An ab Initio study, Phys. Rev. B, 2017, vol. 95, no. 11, p. 115204.
- Novikov, S.V., Enhanced bimolecular recombination of charge carriers in amorphous organic semiconductors: Overcoming the Langevin limit, J. Phys. Chem. C, 2019, vol. 123, no. 31, p. 18854.
- Liquid Crystalline Semiconductors: Materials, Properties and Applications, Bushby, R.J., Kelly, S.M., and O’Neill, M, Eds, Dordrecht: Springer, 2012. 274 p.
- Nakanishi, W., Yoshioka, T., Taka, H., Xue, J.Y., Kita, H., and Isobe, H., [n]cyclo-2,7-naphthylenes: Synthesis and isolation of macrocyclic aromatic hydrocarbons having bipolar carrier transport ability, Angew. Chem., 2011, vol. 123, no. 23, p. 5435.
- Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K., Langeveld-Voss, B.M.W., Spiering, A.J.H., Janssen, R.A.J., Meijer, E.W., Herwig, P., and de Leeuw, D.M., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers, Nature, 1999, vol. 401, no. 6754, p. 685.
- Emeis, C.A. and Fehder, P.L., Microscopic mechanism for diffusion and the rates of diffusion-controlled reactions in simple liquid solvents, J. Am. Chem. Soc., 1970, vol. 92, no. 8, p. 2246.
- Freeman, D.L. and Doll, J.D., The influence of diffusion on surface reaction kinetics, J. Chem. Phys., 1983, vol. 78, no. 10, p. 6002.
- Novikov, S., Two-dimensional bimolecular recombination in amorphous organic semiconductors, Phys. Chem. Chem. Phys., 2020, vol. 22, no. 3, p. 1174.
- Nenashev, A.V., Jansson, F., Baranovskii, S.D., Österbacka, R., Dvurechenskii, A.V., and Gebhard, F., Role of diffusion in two-dimensional bimolecular recombination, Appl. Phys. Lett., 2010, vol. 96, no. 21, p. 213304.
- Greenham, N.C. and Bobbert, P.A., Two-dimensional electron-hole capture in a disordered hopping system, Phys. Rev. B, 2003, vol. 68, no. 24, p. 245301.
- Juška, G., Genevi ius, K., Nekrašas, N., Sliaužys, G., and Österbacka, R., Two dimensional Langevin recombination in regioregular poly(3-hexylthiophene), Appl. Phys. Lett., 2009, vol. 95, no. 1, p. 013303.
- Sliaužys, G., Juška, G., Arlauskas, K., Pivrikas, A., Österbacka, R., Scharber, M., Mozer, A., and Sariciftci, N.S., Recombination of photogenerated and injected charge carriers in π-conjugated polymer/fullerene blends, Thin Solid Films, 2006, vol. 511–512, p. 224.
- Pivrikas, A., Sariciftci, N.S., Juška, G., and Österbacka, R., A review of charge transport and recombination in polymer/fullerene organic solar cells, Prog. Photovoltaics, 2007, vol. 15, no. 8, p. 677.
- Scott, J.C. and Malliaras, G.G., Charge injection and recombination at the metal-organic interface, Chem. Phys. Lett., 1999, vol. 299, no. 2, p. 115.
- Burin, A.L. and Ratner, M.A., Charge injection into disordered molecular films, J. Polym. Sci. B, 2003, vol. 41, no. 21, p. 260.
- Lampert, M.A. and Mark, P., Current Injection in Solids, New York: Academic Press, 1970. 351 p.
- Novikov, S.V., Density of states in locally ordered amorphous organic semiconductors: Emergence of the exponential tails, J. Chem. Phys., 2021, vol. 154, no. 12, p. 124711.
Дополнительные файлы

Примечание
Статья представлена участником Всероссийской конференции “Электрохимия-2023”, состоявшейся с 23 по 26 октября 2023 года в Москве на базе ИФХЭ РАН.