ОБ ОПРЕДЕЛЕНИИ СТАЦИОНАРНОЙ ТЕМПЕРАТУРЫ В НЕОГРАНИЧЕННОЙ ПОЛОСЕ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследованы вопросы существования и единственности решения задачи определения стационарной температуры на верхней границе полосы при известных условиях на нижней границе.

Об авторах

Ш. А Алимов

Филиал Московского государственного университета имени М.В. Ломоносова; Национальный университет Узбекистана имени Мирзо Улугбека

Email: sh_alimov@mail.ru
Ташкент, Узбекистан

А. К Кудайбергенов

Национальный университет Узбекистана имени Мирзо Улугбека

Email: khudaybergenovallambergen@mail.ru
Ташкент, Узбекистан

Список литературы

  1. Тихонов, А.Н. Уравнения математической физики / А.Н. Тихонов, А.А. Самарский. — М. : Наука, 1966. — 724 с.
  2. Hadamard, J., Lectures on Cauchy’s Problem in Linear Partial Differential Equations, New Haven: Yale University Press; London: Humphrey Milford; Oxford: University Press, 1923.
  3. Alessandrini, G., Rondi, L., Rosset, E., and Vessella, S., The stability for the Cauchy problem for elliptic equations, arXiv:0907.2882v1[math.AP] 16 Jul 2009.
  4. Лаврентьев, М.М. О задаче Коши для уравнения Лапласа / М.М. Лаврентьев. — Изв. АН СССР. Сер. математическая. — 1956. — Т. 20, № 6. — С. 819-842.
  5. Мизохата, С. Теория уравнений с частными производными / С. Мизохата ; пер. с яп. Ю.В. Егорова ; под ред. О.А. Олейник. — М. : Мир, 1977. — 504 с.
  6. Кальменов, Т.Ш. Критерий сильной разрешимости смешанной задачи Коши для уравнения Лапласа / Т.Ш. Кальменов, У.А. Искакова // Дифференц. уравнения. — 2009. — Т. 45, № 10. — С. 1460-1466.
  7. Kabanikhin, S.I., Inverse and Ill-posed Problems: Theory and Applications, Berlin; Boston: Springer, 2010.
  8. Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., and Yagola, A.G., Numerical Methods for the Solution of Ill-Posed Problems, Kluwer Academic Publishers, 1995.
  9. Alimov, Sh.A. and Qudaybergenov, A.K., Determination of temperature at the outer boundary of a body, J. Math. Sci., 2023, vol. 274, no. 2, pp. 159-171.
  10. Ильин, В.А. Спектральная теория дифференциальных операторов. Самосопряженные дифференциальные операторы / В.А. Ильин. — М. : Наука, 1991. — 366 с.
  11. Наймарк, М.А. Линейные дифференциальные операторы / М.А. Наймарк. — М. : Наука, 1969. — 528 с.
  12. Садовничий, В.А. Теория операторов. 5-е изд. / В.А. Садовничий. — М. : Изд-во Моск. ун-та, 2004. — 384 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024