Об ограниченных траекториях автономной системы с выделенной положительно однородной нелинейностью

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследованы ограниченные траектории автономной системы с выделенной положительно однородной нелинейностью, являющейся градиентом гладкой функции. Доказано существование нестационарных ограниченных траекторий, лежащих в связных компонентах множества точек, где положительно однородная функция отрицательна, и ненулевых стационарных точек в тех связных компонентах, эйлерова характеристика замыкания которых отлична от нуля. Существование нестационарных ограниченных траекторий обосновано с использованием метода Важевского, а существование стационарных точек -- с помощью методов вычисления вращения конечномерных векторных полей.

Об авторах

Э. Мухамадиев

Вологодский государственный университет

Email: emuhamadiev@rambler.ru
Вологда, Россия

А. Н Наимов

Вологодский государственный университет

Email: naimovan@vogu35.ru
Вологда, Россия

М. В Быстрецкий

Вологодский государственный университет

Автор, ответственный за переписку.
Email: pmbmv@bk.ru
Вологда, Россия

Список литературы

  1. Мухамадиев Э. О построении правильной направляющей функции для системы дифференциальных уравнений // Докл. АН СССР. 1970. Т. 190. № 4. С. 777-779.
  2. Мухамадиев Э., Наимов А.Н. Критерии существования периодических и ограниченных решений для трёхмерных систем дифференциальных уравнений // Тр. Ин-та математики и механики УрО РАН. 2021. Т. 27. № 1. С. 157-172.
  3. Хартман Ф. Обыкновенные дифференциальные уравнения. М., 1970.
  4. Красносельский М.А., Забрейко П.П. Геометрические методы нелинейного анализа. М., 1975.
  5. Борисович Ю.Г., Близняков Н.М., Израилевич Я.А., Фоменко Т.Н. Введение в топологию. М., 2014.
  6. Mukhamadiev E., Naimov A.N. On the homotopy classification of positively homogeneous functions of three variables // Iss. Anal. 2021. V. 10. № 2. P. 67-78.
  7. Мухамадиев Э. Ограниченные решения и гомотопические инварианты систем нелинейных дифференциальных уравнений // Докл. РАН. 1996. Т. 351. № 5. С. 596-598.
  8. Мухамадиев Э., Наимов А.Н. Об априорной оценке и существовании периодических решений для одного класса систем нелинейных обыкновенных дифференциальных уравнений // Изв. вузов. Математика. 2022. № 4. С. 37-48.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023