Спектральные свойства генератора полугруппы, порождаемой вольтерровым интегро-дифференциальным уравнением

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучены спектральные свойства линейного оператора, являющегося генератором полугруппы, порождаемой вольтерровым интегро-дифференциальным уравнением в гильбертовом пространстве. Такие интегро-дифференциальные уравнения могут быть реализованы как интегро-дифференциальные с частными производными, возникающие в теории вязкоупругости, в теории распространения тепла в средах с памятью, а также имеют много других важных приложений. Установленные результаты о базисности Рисса корневых векторов генератора полугруппы могут быть использованы при изучении свойств решений интегро-дифференциальных уравнений.

Об авторах

В. В Власов

Московский государственный университет имени М.В. Ломоносова; Московский центр фундаментальной и прикладной математики

Email: vikmont@yandex.ru
г. Москва, Россия

Н. А Раутиан

Московский государственный университет имени М.В. Ломоносова; Московский центр фундаментальной и прикладной математики

Автор, ответственный за переписку.
Email: nrautian@mail.ru
г. Москва, Россия

Список литературы

  1. Ильюшин А.А., Победря Б.Е. Основы математической теории термовязкоупругости. М., 1970.
  2. Christensen R.M. Theory of Viscoelasticity. An Introduction. New York; London, 1971.
  3. Amendola G., Fabrizio M., Golden J.M. Thermodynamics of Materials with Memory. Theory and Applications. New-York; Dordrecht; Heidelberg; London, 2012.
  4. Gurtin M.E., Pipkin A.C. General theory of heat conduction with finite wave speed // Arch. Rat. Mech. Anal. 1968. V. 31. P. 113-126.
  5. Власов В.В., Раутиан Н.А. Спектральный анализ функционально-дифференциальных уравнений. М., 2016.
  6. Гельфанд И.М., Виленкин Н.Я. Некоторые применения гармонического анализа. Оснащённые гильбертовы пространства. М., 1961.
  7. Крейн С.Г. Линейные дифференциальные уравнения в банаховых пространствах. М., 1967.
  8. Раутиан Н.А. О свойствах полугрупп, порождаемых вольтерровыми интегро-дифференциальными уравнениями с ядрами, представимыми интегралами Стилтьеса // Дифференц. уравнения. 2021. Т. 57. № 9. С. 1255-1272.
  9. Власов В.В., Раутиан Н.А. Корректная разрешимость вольтерровых интегро-дифференциальных уравнений в гильбертовых пространствах // Дифференц. уравнения. 2022. Т. 58. № 10. С. 1410-1426.
  10. Rautian N.A. On the properties of the generators of semigroups associated with Volterra integro-differential equations // Differ. Equat. 2021. V. 57. № 12. P. 1652-1664.
  11. Rautian N.A. Studying Volterra integro-differential equations by methods of the theory of operator semigroups // Differ. Equat. 2021. V. 57. № 12. P. 1665-1684.
  12. Гохберг И.Ц., Крейн М.Г. Введение в теорию линейных несамосопряжённых операторов в гильбертовом пространстве. М., 1967.
  13. Маркус А.С. Введение в спектральную теорию полиномиальных операторных пучков. Кишинёв, 1986.
  14. Радзиевский Г.В. Асимптотика распределения характеристических чисел оператор-функций, аналитических в угле // Мат. сб. 1980. Т. 112. № 3. C. 396-420.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023