Neanaliticheskie pervye integraly analiticheskikh sistem differentsial'nykh uravneniy v okrestnosti ustoychivykh polozheniy ravnovesiya
- Autores: Kozlov V.V1
-
Afiliações:
- Steklov Mathematical Institute of the Russian Academy of Sciences
- Edição: Volume 59, Nº 6 (2023)
- Páginas: 843-846
- Seção: Articles
- URL: https://ter-arkhiv.ru/0374-0641/article/view/649365
- DOI: https://doi.org/10.31857/S0374064123060134
- EDN: https://elibrary.ru/FIKMPW
- ID: 649365
Citar
Resumo
In even-dimensional phase spaces, we give examples of analytic systems of differential equations that have isolated equilibria and admit nonanalytic first integrals. These integrals are positive definite in a neighborhood of the equilibria, which proves the stability of the equilibria (on the entire time axis). However, such systems of differential equations do not admit nontrivial first integrals in the form of formal power series at all. In particular, the Lyapunov stability of equilibria of analytic systems does not imply their formal stability. In the case of an odd-dimensional phase space, all isolated equilibria are apparently unstable.
Sobre autores
V. Kozlov
Steklov Mathematical Institute of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: kozlov@pran.ru
Moscow, 119991, Russia
Bibliografia
- Ляпунов А.М. Общая задача об устойчивости движения. М.; Л., 1950.
- Зигель К., Мозер Ю. Лекции по небесной механике. М.; Ижевск, 2001.
- Немыцкий В.В., Степанов В.В. Качественная теория дифференциальных уравнений. М.; Л., 1949.
- Brunella M. Instability of equilibria in dimension three // Ann. Inst. Fourier (Grenoble). 1998. V. 48. № 5. P. 1345-1357.
- Козлов В.В., Трещёв Д.В. О неустойчивости изолированных равновесий динамических систем с инвариантной мерой в нечётномерном пространстве // Мат. заметки. 1999. Т. 65. Вып. 5. С. 674-680.
- Козлов В.В. Первые интегралы и асимптотические траектории // Мат. сб. 2020. Т. 211. № 1. С. 32-59.
- Маркеев А.П. Точки либрации в небесной механике и космодинамике. М., 1978.
Arquivos suplementares
