CONTROL DESIGN FOR A MULTIDIMENSIONAL SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS WITH RELAY HYSTERESIS AND PERTURBATION

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A multidimensional controllable system with a constant matrix, a significant nonlinearity of the twoposition relay type with hysteresis as a control and a continuous periodic perturbation function is considered. The system matrix has simple, real, non-zero eigenvalues, among which one can be positive. Conditions for the system parameters, including the nonlinearity ones, are established under which there is a single two-point oscillatory periodic solution with a period comparable to the period of the perturbation function in the case of a special type of the feedback vector. The asymptotic stability of the solution has been proven using the phase plane method. The results obtained are illustrated by examples for three-dimensional systems.

Авторлар туралы

V. Yevstafyeva

Saint Petersburg State University

Email: v.evstafieva@spbu.ru
Russia

Әдебиет тізімі

  1. Utkin, V.I. and Orlov, Yu.V., Control systems with vector relays, Autom. Remote Control, 2019, vol. 80, no. 9, pp. 1671–1680.
  2. Fursov, A.S., Mitrev, R.P., Krylov, P.A., and Todorov, T.S., On the existence of a periodic mode in a nonlinear system, Differ. Equat., 2021, vol. 57, no. 8, pp. 1076–1087.
  3. Da Silva, C.E.L. Periodic solutions of a class of non-autonomous discontinuous second-order differential equations / C.E.L. Da Silva, A. Jacquemard, M.A. Teixeira // J. Dyn. Control Syst. — 2020. — V. 26, № 1. — P. 17–44.
  4. Medvedskii, A.L., Meleshenko, P.A., Nesterov, V.A. [et al.], Unstable oscillating systems with hysteresis: problems of stabilization and control, J. Comput. Syst. Sci. Int., 2020, vol. 59, no. 4, pp. 533–556.
  5. Vasquez-Beltran, M.A. Recursive algorithm for the control of output remnant of Preisach hysteresis operator / M.A. Vasquez-Beltran, B. Jayawardhana, R. Peletier // IEEE Control Syst. Lett. — 2021. — V. 5, № 3. — P. 1061–1066.
  6. Fen, M.O. Quasilinear systems with unpredictable relay perturbations / M.O. Fen, F. Fen // Turk. J. Math. — 2022. — V. 46, № 4. — P. 1369–1383.
  7. Tsypkin, Ya.Z., Releinye avtomaticheskie sistemy (Relay Automatic Systems), Moscow: Nauka, 1974
  8. Krasnosel’skii, M.A. and Pokrovskii, A.V., Sistemy s gisterezisom (Systems with Hysteresis), Moscow: Nauka, 1983.
  9. Yevstafyeva, V.V., On the existence of two-point oscillatory solutions of a perturbed relay system with hysteresis, Differ. Equat., 2021, vol. 57, no. 2, pp. 155–164.
  10. Yevstafyeva, V.V., Existence of two-point oscillatory solutions of a relay nonautonomous system with multiple eigenvalue of a real symmetric matrix, Ukr. Math. J., 2021, vol. 73, no. 5, pp. 746–757.
  11. Yevstafyeva, V.V., Control design for a perturbed system with an ambiguous nonlinearity, Autom. Remote Control, 2023, vol. 84, no. 3, pp. 254–269.
  12. Yevstafyeva, V.V., Criterion for the existence of two-point oscillatory solution of a perturbed system with a relay, Math. Notes, 2023, vol. 114, no. 2, pp. 212–222.
  13. Differential equations with hysteresis operators. Existence of solutions, stability, and oscillations / G.A. Leonov, M.M. Shumafov, V.A. Teshev, K.D. Aleksandrov // Differ. Equat. — 2017. — V. 53, № 13. — P. 1764–1816.
  14. Kuntsevich, V.M., Letov, A.M., Naumov, B.N. [et al.], Tochnye metody issledovaniya nelineinykh sistem avtomaticheskogo upravleniya (Exact Analysis Methods for Nonlinear Automatic Control Systems), Moscow: Mashinostroenie, 1971.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024