Hopf Bifurcation in a Predator–Prey System with Infection

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study a model of a predator–prey system with possible infection of prey in the form of a three-dimensional system of ordinary differential equations. Using the localization method of compact invariant sets, the existence of an attractor is proved and a compact positively invariant set is found that estimates its position. The conditions for the extinction of populations and the existence of equilibria are found. A numerical method for finding a Hopf bifurcation of the inner equilibrium is proposed and an example of an arising stable limit cycle is given.

Авторлар туралы

A. Krishchenko

Bauman Moscow State Technical University, Moscow, 105005, Russia; Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, Moscow, 119333, Russia

Email: apkri@bmstu.ru
Москва Россия

O. Podderegin

Bauman Moscow State Technical University, Moscow, 105005, Russia

Хат алмасуға жауапты Автор.
Email: podderegino@gmail.com
Москва Россия

Әдебиет тізімі

  1. Bate A.M., Hilkerr F.M. Complex dynamics in an eco-epidemiological model // Bull. Math. Biol. 2013. V. 75. P. 2059-2078.
  2. Крищенко А.П. Локализация инвариантных компактов динамических систем // Дифференц. уравнения. 2005. Т. 41. № 12. С. 1597-1604.
  3. Арнольд В.И. Обыкновенные дифференциальные уравнения. М., 2012.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2023