Real-Time Plasma Magnetic Control System with Equilibrium Reconstruction Algorithm in the Feedback for the Globus-M2 Tokamak
- 作者: Konkov A.E.1, Korenev P.S.1, Mitrishkin Y.V.1,2, Balachenkov I.M.3, Kiselev E.O.3
-
隶属关系:
- Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
- Moscow State University
- Ioffe Institute, Russian Academy of Sciences
- 期: 卷 49, 编号 12 (2023)
- 页面: 1348-1356
- 栏目: TOKAMAKS
- URL: https://ter-arkhiv.ru/0367-2921/article/view/668901
- DOI: https://doi.org/10.31857/S0367292123600760
- EDN: https://elibrary.ru/APGEWX
- ID: 668901
如何引用文章
全文:
详细
To control the plasma shape during a tokamak discharge, it is necessary to calculate the plasma
shape in real-time. The rate requirements for the shape calculations are especially high for tokamaks with a
small radius, such as Globus-M2 (St. Petersburg, Russia). A real-time magnetic plasma control system for
the Globus-M2 tokamak with flux and current distribution identification (FCDI) algorithm for the plasma
equilibrium reconstruction in feedback is presented. The control system contains discrete one-dimensional
and matrix proportional-integral-derivative controllers synthesized by the matrix inequality method using
the plasma LPV model calculated on experimental data, and carries out the coordinated control of the plasma
position and shape as well as the compensation for the scattered field of the central solenoid. The FCDI algorithm
is improved for the operation in the real-time mode, and makes it possible to reconstruct the plasma
shape in 20 μs. The digital control system with a feedback algorithm was simulated on a real-time test bench,
consisting of two Speedgoat Performance Real-Time Target Machines (RTTM), and demonstrated the average
Task Execution Time (TET) value in 67 μs.
作者简介
A. Konkov
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: konkov@physics.msu.ru
Moscow, Russia
P. Korenev
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: pkorenev@ipu.ru
Moscow, Russia
Yu. Mitrishkin
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences; Moscow State University
Email: pkorenev@ipu.ru
Moscow, Russia; Moscow, Russia
I. Balachenkov
Ioffe Institute, Russian Academy of Sciences
Email: pkorenev@ipu.ru
St. Petersburg, Russia
E. Kiselev
Ioffe Institute, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: pkorenev@ipu.ru
St. Petersburg, Russia
参考
- Ferron J., Walker M., Lao L., John H.S., Humphreys D., Leuer J. // Nuclear Fusion. 1998. T. 38. C. 1055. https://doi.org/10.1088/0029-5515/38/7/308
- Moret J.-M., Duval B., Le H., Coda S., Felici F., Reimerdes H. // Fusion Engineering and Design. 2015. T. 91. C. 1. https://doi.org/10.1016/j.fusengdes.2014.09.019
- Huang Y., Xiao B., Luo Z., Yuan Q. // Fusion Engineering and Design. 2018. T. 128. C. 82. https://doi.org/10.1016/j.fusengdes.2018.01.043
- Minaev V.B., Gusev V.K., Sakharov N.V., Varfolome-ev V.I. // Nuclear Fusion. 2017. T. 57. C. 066047. https://doi.org/10.1088/1741-4326/aa69e0
- Коренев П.С., Коньков А.Е., Митришкин Ю.В., Балаченков И.М., Киселев Е.О., Минаев В.Б., Сахо-ров Н.В., Петров Ю.В. // Письма ЖТФ. 2023. Т. 49. С. 36. https://doi.org/10.21883/PJTF.2023.07.54920.19468
- Mitrishkin Y.V., Korenev P.S., Kartsev N.M., Kuzne-tsov E.A., Prokhorov A.A., Patrov M.I. // Control Engineering Practice. 2019. T. 87. C. 97. https://doi.org/10.1016/j.conengprac.2019.03.018
- Mitrishkin Y.V., Prokhorov A.A., Korenev P.S., Pat-rov M.I. // Control Engineering Practice. 2020. T. 100. C. 104446. https://doi.org/10.1016/j.conengpraс.2020.104446
- Konkov A.E., Mitrishkin Y.V., Korenev P.S., Patrov M.I. // IFACPapersOnLine. 2020. T. 53. C. 7344. https://doi.org/10.1016/j.ifacol.2020.12.1000
- Ariola M., Pironti A. Magnetic Control of Tokamak Plasmas. Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-29890-0
- Wesson J., Campbell D. Tokamaks. Clarendon Press, 2004. (International series of monographs on physics).
- Хайрутдинов Р.Р., Лукаш В.Э., Пустовитов В.Д. // Физика плазмы. 2021. Т. 47. С. 1007. https://doi.org/10.31857/s0367292121120039
- Пустовитов В.Д. // Физика плазмы. 2019. Т. 45. С. 1088. https://doi.org/10.1134 / s0367292119120072
- Swain D., Neilson G. // Nuclear Fusion. 1982. T. 22. C. 1015. https://doi.org/10.1088/0029-5515/22/8/002
- Kuznetsov Y., Nascimento I., Galvao R., Yasin I. // Nuclear Fusion. 1998. T. 38. C. 1829. https://doi.org/10.1088/0029-5515/38/12/308
- Forsythe G., Malcolm M.M.C. Computer methods for mathematical computations. USA, NJ: Englewood Cliffs, 1977.
- Mitrishkin Y.V., Korenev P.S., Konkov A.E., Kruzhkov V.I., Ovsiannikov N.E. // Mathematics. 2021. T. 10. C. 40. https://doi.org/10.3390/math10010040
- Boyd S., Hast M., Åström K.J. // Intern. J. Robust Nonlinear Control. 2016. T. 26. T. 1718. https://doi.org/10.1002/rnc.3376.11
- Mitrishkin Y., Korenev P., Konkov A., Kartsev N., Smir-nov I. // Fusion Engineering and Design. 2022. T. 174. C. 112993. https://doi.org/10.1016/j.fusengdes.2021.112993
- Konkov A.E., Mitrishkin Y.V. // IFAC-PapersOnLine. 2022. T. 55. C. 327. https://doi.org/10.1016/j.ifacol.2022.07.057
- Митришкин Ю., Коньков А., Коренев П. // Устойчивость и колебания нелинейных систем управления (конференция Пятницкого): Материалы XVI Международной конференции. 2022. С. 286.
补充文件
